

Formulas used in the Caring Cargo Calculator

Version 2013-08-23

Table of contents

			Page
Τá	able of cont	ents	1
1	Parame ⁻	ters in the Formulas	2
2	TOP-OV	ER LASHING	4
	2.1 EN 3	12195-1:2010	4
	2.1.1	Sliding:	4
		Tipping:	
3		SHING	
		12195-1:2010	
	3.1.1	Sliding:	7
	3.1.2	Tipping:	8
4		LASHING	
	4.1 EN 3	12195-1:2010	9
	4.1.1	Sliding:	9
	4.1.2	Tipping:	10
5	STRAIGH	T/CROSS LASHING	11
		I2195-1:2010	
		Sliding:	
		Tipping:	

1 Parameters in the Formulas

General parameters	Unit

 f_s = Safety factor for frictional lashings -

m = Mass of the load ton (=1000 kg)

N = Number of rows -

n = Number of lashing -

Accelerations

g =	Gravitational acceleration (= 9.81 m/s²)	m/s ²
$c_x =$	Longitudinal acceleration	=

 c_y = Transverse acceleration -

 c_z = Vertical acceleration -

Friction

 μ = Friction factor -

 f_{μ} = Conversion factor for dynamic friction -

Properties of the lashing device

FT =	Tension force of a lashing device (= STF)	kN (= 100 daN)
S _{TF} =	Standard tension force	kN (= 100 daN)
FR=	Restraining force of a lashing device	kN (= 100 daN)
LC =	Lashing capacity of a lashing device	kN (= 100 daN)

Angles

α =	Vertical lashing angle	0
вx=	Longitudinal lashing angle	•
ву=	Transverse lashing angle	0
α =	Vertical lashing angle	•

Distances Unit

L = Total length of the cargo m

B =	Total width (breadth) of the cargo	m
H =	Total height of the cargo	m
w =	Width of the load	m
h =	Lever arm lashing moment	m
$b = B_{tp} =$	Transverse distance from the centre of gravity of the load to tipping point (lever arm of standing moment)	m
$b = L_{tp} =$	Longitudinal distance from the centre of gravity of the load to the tipping point (lever arm of standing moment)	m
$d = H_{tp} =$	Vertical distance from the centre of gravity of the load to the tipping point (lever arm of tilting moment)	m
<i>I</i> =	Distance between the lashing point of the cargo and the point of tipping of the cargo in longitudinally direction (laver arm of the lashing moment)	m
s =	Vertical distance from the platform to the point where the lashing device acts on the load	m
t =	Vertical distance from platform to the tipping point	m
<i>p</i> =	Vertical distance from the outer edge of the load to the point where the lashing device acts on the load	m
<i>r</i> =	Horizontal distance from the outer edge of the load to the tipping point	m

Note:

- If **m < 0** in any of the formulas there is no risk of sliding or tipping
- LC = MSL = SWL = Lashing capacity

2 TOP-OVER LASHING

2.1 EN 12195-1:2010

2.1.1 Sliding:

Basic formula according EN12195-1:2010

All Directions
$$n \ge \frac{m \cdot g(c_{x,y} - c_z \cdot \mu)}{2\mu \cdot \sin \alpha \cdot F_T} \cdot f_s$$
 Equ (10)

with n = 1 the following formula is given for the mass m one top-over lashing can prevent from sliding in all direction:

All directions:
$$m = \frac{2\mu \cdot \sin \alpha \cdot F_T}{g(c_{x,y} - \mu \cdot c_Z)f_s}$$

In the cargo calculator the following values are used;

m= Mass of the load in tons $\mu=$ Friction factor which is a key value in the tables $f_s=$ Safety factor; 1.25 (forward on road) else 1.1 $F_T=$ Tension force of lashing device in kN (Note: 1 kN = 100 daN) $\alpha=$ 75° C_{x,y,z} Due to mode of transport according to table 2, 3 and 4 in standard g= 9.81 m/s²

Basic formula according to EN12195-1:2010

For-and rearward
$$2n \cdot F_T \cdot \sin \alpha \cdot \frac{L}{2} \ge m \cdot g(c_x \cdot d - c_z \cdot b) \cdot f_s$$
 Equ (15)

Transvers
$$n \ge \frac{m \cdot g(c_y \cdot d - c_z \cdot b)}{w \cdot F_T(\sin \alpha + 0.25 \cdot (N - 1))} \cdot f_s$$
 Equ (16)

Forward, rearward:

with n = 1, $d = H_{tp}$, and $b = L_{tp}$ the following formula is given for the mass m one top-over lashing can prevent from lengthways tipping:

$$m = \frac{F_T \cdot \sin \alpha \cdot L}{g(c_x \cdot H_{tp} - c_z \cdot L_{tp}) \cdot f_s}$$

In case of symmetrical mass centre of the cargo;

$$H_{\it tp}=rac{H}{2}$$
 , $L_{\it tp}=rac{L}{2}$ and $\it n=1$:

$$m = \frac{2 \cdot F_T \cdot \sin \alpha}{g(c_x \cdot \frac{H}{I} - c_z) \cdot f_s}$$

Transvers, 1 row:

with n = 1, N = 1, w = B, $d = H_{tp}$, and $b = B_{tp}$ the following formula is given for the mass m one top-over lashing can prevent from lengthways tipping:

$$m = \frac{F_T \cdot \sin \alpha \cdot B}{g(c_y \cdot H_{to} - c_z \cdot B_{to}) \cdot f_s}$$

In case of symmetrical mass centre of the cargo;

$$H_{sp} = \frac{H}{2}, B_{sp} = \frac{B}{2} \text{ and } n = 1:$$

$$m = \frac{2 \cdot F_T \cdot \sin \alpha}{g(c_y \cdot \frac{H}{B} - c_z) \cdot f_s}$$
Equ (14)

Transverse, several rows, in case of symmetrical mass centre of the cargo;

$$H_{tp} = \frac{H}{2}, B_{tp} = \frac{B}{2} \text{ and } n = 1:$$

$$m = \frac{2 \cdot F_T \cdot (\sin \alpha + 0.25 \cdot (N - 1))}{g(c_y \cdot N \cdot \frac{H}{B} - c_z) \cdot f_s}$$
Equ (17)

In the cargo calculator the following values are used;

m =	Mass of the load in tons
H/L =	The ratio height H and length L which is a key value in the tables in forward and backward direction
H/B =	The ratio height H and width B which is a key value in the tables in <i>transverse</i> direction
$F_T =$	Tension force of lashing device in kN (if a_h = 0.5) or $LC/2$ (if a_h = 0.6). (Note 1 kN = 100 daN)
α=	75º
$f_s =$	Safety factor; 1.25 (forward on road) else 1.1
$C_{x,y,z} =$	Due to mode of transport according to table 2, 3 and 4 in standard
N =	Number of rows which is a key value in tables for transverse direction
g =	9.81 m/s ²

Note!

The risk of tilting is calculated with c_y = 0.5 and F_T = tension force in the lashing device. When there is risk of tilting the lowest value of the two alternatives, c_y = 0.5 and F_T or c_y = 0.6 and LC/2, is presented by the cargo calculator.

3 LOOP LASHING

3.1 EN 12195-1:2010

3.1.1 Sliding:

Basic formula according to EN 12195-1:2010

$$n \ge \frac{m \cdot g(c_y - c_z \cdot f_\mu \cdot \mu)}{F_R(\cos \alpha_1 \cdot \sin \beta_{x_1} + \cos \alpha_2 \cdot \sin \beta_{x_2} + f_\mu \cdot \mu \cdot \sin \alpha_1 + f_\mu \cdot \mu \cdot \sin \alpha_2)}$$
 Equ (30)

with $F_R = LC$, $\mu_d = f_\mu \cdot \mu$, $\alpha_2 = 0^\circ$, θ_{x1} and $\theta_{x2} = 90^\circ$ the following formula is given for the mass m one pair of loop lashing can prevent from sliding in transverse direction:

Transverse:
$$m = \frac{LC \cdot (\mu \cdot f_{\mu} \cdot \sin \alpha_1 + 1 + \cos \alpha_1)}{(c_y - \mu \cdot f_{\mu} \cdot c_z) \cdot g}$$

In the cargo calculator the following values are used;

m = Mass of the load in tons

 μ = Friction factor which is a key value in the tables

 $f_{\mu} = 0.75$

LC = Lashing capacity of lashing device in kN (Note: 1 kN = 100 daN)

 $\alpha_1 = 909$

 $c_{y,z}$ Due to mode of transport according to table 2, 3 and 4 in standard

 $g = 9.81 \,\mathrm{m/s^2}$

Basic formula according to EN 12195-1:2010

$$n \ge \frac{m \cdot g(c_y \cdot d - c_z \cdot b)}{F_R(\sin \alpha_1 \cdot w + \cos \alpha_1 \cdot \sin \beta_{x_1} \cdot h + 0.25(N - 1) \cdot w)}$$
 Equ (33)

In case of symmetrical mass centre of the cargo;

$$d = H_{tp} = \frac{H}{2}$$
, $b = B_{tp} = \frac{B}{2}$, $w = B$, $n = 1$, $\alpha_1 = 90^{\circ}$ and $\theta_{x1} = 90^{\circ}$

gives the following formula for the mass m one pair of loop lashing can prevent from tipping in transverse direction:

Transverse:

$$m = \frac{2 \cdot F_R \cdot (1 + (N - 1) \cdot 0.25)}{(c_y \cdot N \cdot \frac{H}{B} - c_z) \cdot g}$$

In the cargo calculator the following values are used;

m = Mass of the load in tons

The ratio height H and width B which is a key value in the tables in *transverse*

direction

 $F_R = 0.5 \cdot LC$

LC = Lashing capacity of lashing device in kN (Note: 1 kN = 100 daN)

 $c_{v,z}$ = Due to mode of transport according to table 2, 3 and 4 in standard

N = Number of rows which is a key value in tables for transverse direction

 $g = 9.81 \,\mathrm{m/s^2}$

4 SPRING LASHING

4.1 EN 12195-1:2010

4.1.1 Sliding:

Basic formula according to EN 12195-1:2010

$$n \ge \frac{m \cdot g(c_x - c_z \cdot f_\mu \cdot \mu)}{F_R(\mu \cdot f_\mu \cdot \sin \alpha + \cos \alpha \cdot \cos \beta_{x,y})}$$
 Based on Equ (35)

with $F_R = LC$, $\theta_{x,y} = 0^\circ$ and n = 2 (spring lashing with two parts) the following formula is given for the mass m one spring lashing can prevent from sliding in lengthways direction

Forward, rearward:
$$m = \frac{2 \cdot LC \cdot (\mu \cdot f_{\mu} \cdot \sin \alpha_{1} + \cos \alpha_{1})}{(c_{x} - \mu \cdot f_{\mu} \cdot c_{z}) \cdot g}$$

In the cargo calculator the following values are used;

m = Mass of the load in tons

 μ = Friction factor which is a key value in the tables

 $f_{\mu} = 0.75$

LC = Lashing capacity of lashing device in kN (Note: 1 kN = 100 daN)

 $\alpha_1 = 45^{\circ}$

 $c_{x,z}$ = Due to mode of transport according to table 2, 3 and 4 in standard

 $q = 9.81 \,\mathrm{m/s^2}$

Basic formula according to EN 12195-1:2010

$$n \ge \frac{m \cdot g(c_x \cdot d - c_z \cdot b)}{F_R \cdot 2(\cos \alpha \cdot \cos \beta_{x,y} \cdot (s - t) + \sin \alpha \cdot (p - r))}$$
 Based on Equ (37)

with $F_R = LC$, $\theta_{x,y} = 0^\circ$, $d = H_{tp}$, $b = L_{tp}$, (s-t) = H, and (p-r) = 0 gives the following formula for the mass m one spring lashing can prevent from tipping in lengthways direction:

Forward, rearward:

$$m = \frac{2 \cdot LC \cdot \cos \alpha \cdot H}{(c_x \cdot H_{tp} - c_z \cdot L_{tp}) \cdot g}$$

In case of symmetrical mass centre of the cargo;

$$H_{tp} = \frac{H}{2}$$
, $L_{tp} = \frac{L}{2}$:

$$m = \frac{4 \cdot LC \cdot \cos \alpha \cdot \frac{H}{L}}{(c_x \cdot \frac{H}{L} - c_z) \cdot g}$$

In the cargo calculator the following values are used;

m = Mass of the load in tons

The ratio height H and length L which is a key value in the tables in *forward* and

backward direction

LC = Lashing capacity of lashing device in kN (Note: 1 kN = 100 daN)

α = 45º

 $C_{x,z}$ Due to mode of transport according to table 2, 3 and 4 in standard

 $q = 9.81 \text{ m/s}^2$

5 STRAIGHT/CROSS LASHING

5.1 EN 12195-1:2010

5.1.1 Sliding:

Basic formula according to EN 12195-1:2010

Forward, rearward:
$$n \ge \frac{m \cdot g(c_x - c_z \cdot f_\mu \cdot \mu)}{F_R(f_\mu \cdot \mu \cdot \sin \alpha + \cos \alpha \cdot \cos \beta_y)}$$
 Based on Equ (22)

Transverse:
$$n \ge \frac{m \cdot g(c_y - c_z \cdot f_\mu \cdot \mu)}{F_R(f_\mu \cdot \mu \cdot \sin \alpha + \cos \alpha \cdot \cos \beta_x)}$$
 Based on Equ (22)

with $F_R = LC$ and n = 1 the following formulas are given for the mass m one straight/cross lashing can prevent from sliding in different direction

Forward:
$$m = \frac{LC \cdot (\cos \alpha \cdot \cos \beta_y + \mu \cdot f_\mu \cdot \sin \alpha)}{(c_x - \mu \cdot f_\mu \cdot c_z) \cdot g}$$

Transverse:
$$m = \frac{LC \cdot (\cos \alpha \cdot \cos \beta_x + \mu \cdot f_\mu \cdot \sin \alpha)}{(c_y - \mu \cdot f_\mu \cdot c_z) \cdot g}$$

Backward:
$$m = \frac{LC \cdot (\cos \alpha \cdot \cos \beta_y + \mu \cdot f_\mu \cdot \sin \alpha)}{(c_x - \mu \cdot f_\mu \cdot c_z) \cdot g}$$

In the cargo calculator the following values are used;

m = Mass of the load in tons

 μ = Friction factor which is a key value in the tables

 $f_{\mu} = 0.75$

LC = Lashing capacity of lashing device in kN (Note: 1 kN = 100 daN)

 $\alpha = 60^{\circ}, \ \theta_{x} = 30^{\circ}, \ \theta_{y} = 30^{\circ}$

 $c_{x,y,z}$ = Due to mode of transport according to table 2, 3 and 4 in standard

 $q = 9.81 \,\mathrm{m/s^2}$

Basic formula according to EN 12195-1:2010

Forward, rearward:
$$n \ge \frac{m \cdot g(c_x \cdot d - c_z \cdot b)}{F_R \cdot (\cos \alpha \cdot \cos \beta_y \cdot (s - t) + \sin \alpha \cdot (p - r))}$$

Transverse:
$$n \ge \frac{m \cdot g(c_y \cdot d - c_z \cdot b)}{F_R \cdot 2(\cos \alpha \cdot \cos \beta_x \cdot (s - t) + \sin \alpha \cdot (p - r))}$$

with $F_R = LC$, $d = H_{tp}$, $b = L_{tp}$ and n = 1 the following formulas are given for the mass m one straight/cross lashing can prevent from tipping in different direction:

Forward:
$$m = \frac{LC \cdot (\cos \alpha \cdot \cos \beta_y \cdot (s-t) + \sin \alpha \cdot (p-r))}{c_x \cdot H_{tp} - c_z \cdot L_{tp}}$$

Transverse:
$$m = \frac{LC \cdot (\cos \alpha \cdot \cos \beta_x \cdot (s-t) + \sin \alpha \cdot (p-r))}{c_y \cdot H_{tp} - c_z \cdot B_{tp}}$$

Backward:
$$m = \frac{LC \cdot (\cos \alpha \cdot \cos \beta_y \cdot (s-t) + \sin \alpha \cdot (p-r))}{c_x \cdot H_{tp} - c_z \cdot L_{tp}}$$

In case of symmetrical mass centre of the cargo and the lashing point is placed in an unfavourable position;

$$H_{tp} = \frac{H}{2}; \ L_{tp} = \frac{L}{2}; \ B_{tp} = \frac{B}{2}; \ (s-t) = \frac{H}{2} + \frac{B}{2} \ or \ h = \frac{H}{2} + \frac{L}{2}; \ (p-r) = 0$$

Forward:
$$m = \frac{LC \cdot (\cos \alpha \cdot \cos \beta_y \cdot (\frac{H}{L} + 1))}{(c_x \cdot \frac{H}{L} - c_z) \cdot g}$$

Transverse:
$$m = \frac{LC \cdot (\cos \alpha \cdot \cos \beta_x \cdot (\frac{H}{B} + 1))}{(c_y \cdot \frac{H}{B} - c_z) \cdot g}$$

Backward:
$$m = \frac{LC \cdot (\cos \alpha \cdot \cos \beta_y \cdot (\frac{H}{L} + 1))}{(c_x \cdot \frac{H}{L} - c_z) \cdot g}$$

In the cargo calculator the following values are used;

m = Mass of the load in tons

The ratio height H and length L which is a key value in the tables in forward and $H/L = \frac{1}{2}$

backward direction

The ratio height H and width B which is a key value in the tables in transverse $H/B = \frac{1}{2}$

direction

LC = Lashing capacity of lashing device in kN (Note: 1 kN = 100 daN)

α = 30º

 $\theta_x = 30^{\circ}$

 $\theta_{v} = 30^{\circ}$

 $c_{x,y,z}$ = Due to mode of transport according to table 2, 3 and 4 in standard

 $g = 9.81 \text{ m/s}^2$