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Abstract

A variety of different classes of astrophysical sources exhibit specttasiizan
many orders of magnitude in photon energy, ranging fromoragivelengths to
high-energy gamma-rays. Such objects can often be assdsath a compact
object (black hole or a neutron star) and include relaiwjsts from active galax-
ies, gamma-ray bursts, accreting black holes and neutars ist X-ray binaries
etc. The formation of the broad-band spectrum typicallgsgilace in hot plasma
through diterent processes like synchrotron radiation, inverse Comgtatter-
ing, photon—photon pair production. Understanding thespaf conditions in
these objects requires detailed modeling of the parti¢letgn interactions.

Numerical simulations of radiative processes in magndtcempact sources
are complicated because both particle and photon disiteispan several orders
of magnitude in energy, the distributions strongly depenctach other, the ra-
diative processes behave significantlffeliently depending on the energy regime,
and, finally, due to the enormoudidrence in the time-scales of the processes. We
have developed a novel computer code for time-dependentations that over-
comes these problems. The processes taken into accounbm@@h scattering,
electron—paositron pair production and annihilation, @ooib scattering as well as
synchrotron emission and absorption. The relevant kiegfiations are discussed
in detail. Analytic expressions for the rates of all inclddghysical processes
are calculated without approximations. We solve coupléegiro-diferential ki-
netic equations for photons and electrositrons without any limitations on the
photon and lepton energies. A numerical scheme is propasgddrantee en-
ergy conservation when dealing with synchrotron processekectron and pho-
ton equations. The code is tested using several problentsildes previously
in the literature. Good agreement with previous works isatbin the parame-
ter regimes where comparison is feasible, with thEedences attributable to our
improved treatment of the microphysics.

We apply the code to study two ftBrent astrophysical problems: prompt
gamma-ray burst emission from neutron-loaded flows andispetates of black
hole X-ray binaries.

Nuclear collisions in neutron-loaded gamma-ray burst owlcan dissipate a
significant fraction of the flow energy, resulting in heatagywell as high-energy
injection of electron—positron pairs. We use our time-aeleat code to self-
consistently follow the evolution of particle and photorstdbutions along the
flow and find that the emerging Comptonized spectra resenhblgettypically
observed in gamma-ray bursts, peaking close to 1 MeV. Hasgrobd spectra
below the peak that present a problem to (synchrotron) shumdels are easily
reproduced. The high-energy spectrum extends to sevekaw@hout a cutd.
Magnetization of the flow will lead to softer spectra peakaigomewhat lower
energies. An additional synchrotron spectral componeluvwbe 50 keV (soft
excess) is also produced.



We discuss the origin of dramaticallyfférent electron distributions respon-
sible for Comptonization in black hole X-ray binaries inithearious states. In
the absence of external soft photons, the electronsfaogeatly thermalized by
synchrotron self-absorption and Coulomb scattering ewerpéire non-thermal
electron injection. The resulting quasi-thermal synatmotself-Compton spec-
tra have very stable slopes and electron temperaturesasitoilthe hard states
of black hole binaries. The observed hard X-ray spectrgesdothe cutfh at 100
keV, and the MeV tail together require low magnetic fieldsngibut the magnetic
dissipation mechanism. The motion of the accretion diskatde the black hole
results in larger Compton cooling and lower equilibriumcéien temperature.
Our self-consistent simulations show that in this case letghtron and photon
distributions attain a power-law-dominated shape simdawhat is observed in
the soft state. The electron distribution in the Cyg X-1 stéite might require a
strong magnetic field, being consistent with the magndyti@idminated corona.



Acknowledgments

The present work was carried out at the Department of Phybio&ersity of
Oulu.

| would first like to thank Dr. Tonu Viik, who first sparked mwterest in
astronomy and gave me my first project. He is also the persannttoduced me
to Prof. Juri Poutanen, who became the main supervisor gbriésent thesis. |
am deeply indebted to Prof. Juri Poutanen, whose day-tadege and unfailing
support helped me through some verttidult times. Without his help this thesis
would never have been completed.

| am grateful to Prof. Andrei M. Beloborodov for his supportdaadvice
regarding the gamma-ray burst project, as well as for thaah#o visit and work
with him at the Columbia University, New York. | also wish twaink Dr. Gabriele
Ghisellini and Prof. Andrzej Zdziarski for pre-examinirfgetthesis and giving
some useful comments.

My gratitude also goes to Askar Ibragimov, Alexandra VatediJari Kajava
and Marja Annala at the University of Oulu for their friengshnd support during
the work that led to the completion of this thesis.

| thank the Department of Physics, University of Oulu, faag@hg at my dis-
posal the facilities necessary to carry out this researtharik CIMO, Academy
of Finland and the Wihuri Foundation for financial support.

| am also grateful to my parents for their support, both peasand financial,
especially at the initial stages of my studies. Finally, mgagest thanks go to my
wife Liis Roosaar, who has stood by me and supported me thautghose years.

Oulu, September 2010 Indrek Vurm






List of original papers

The present thesis is partly based on the following papers:

Paper I: Vurm |, Poutanen J.: Electron thermalization and photorseion from
magnetized compact sources, 2008, International Joufridbdern Physics D,
17,1629

Paper Il: Poutanen J., Vurm I.: On the Origin of Spectral States inréicg
Black Holes, 2009, Astrophysical Journal Letters, 690, L97

Paper 11l : Vurm I., Poutanen J.: Time-Dependent Modeling of Radefro-
cesses in Hot Magnetized Plasmas, 2009, Astrophysicahdh @98, 293

Paper IV: Poutanen J., Vurm I.: Theory of Compton scattering by anigac
electrons, 2010, Astrophysical Journal Supplement Set&% 286.

Paper V: Vurm I., Beloborodov A. M., Poutanen J.: Gamma-ray burstenf
magnetized neutron-loaded flows, 2010, in preparation.



Vi



Contents

Abstract

Acknowledgments

List of original papers v
Contents Vil
Introduction 1
| Physical processes 5
1 Theory of Compton scattering by anisotropic electrons 7
1.1 Introduction . . . . . . . . .. . ... 7
1.2 Relativistickineticequation. . . . . . . .. ... .. ... .. .. 9
1.2.1 Electron distribution and scattering geometry . . ..... 10
1.3 Total cross section and mean powers of energies . . . . ... .11
1.3.1 Totalcross-section . . ... ... ............. 11
1.3.2 Mean powers of scattered photonenergy . . . ... ... 15
1.3.3 Energy exchange and dispersion . . . . .. ... .. ... 20
1.3.4 Radiationforce . . ... .. .. ... .. ... ... 22
1.4 Redistribution functions for anisotropic electrons .. .. . ... 29
1.4.1 Integration over electron directions . . . . . ... ... 9 2
1.4.2 Integration overthe azimuth . . . ... ... ....... 30
1.4.3 Alternative redistribution functions . . . . .. ... .. 34
1.4.4 Approximate redistribution functions . . .. ... .. .. 4 3
1.4.5 Relation to the mean powers of photon energies . . . . . 5. 3
1.5 Examples of redistribution functions . . . . .. ... ... ... 36
1.6 Sunyaev—Zeldovichfiect . . . . .. . .. ... .. ... ..... 42
1.6.1 Scattering inthe comovingframe . . ... .. ... ... 42
1.6.2 Scattering in the externalframe . . . ... ... ... .. 43
1.6.3 Isotropic scattering in the Thomson regime in thetedac
restframe . . . .. .. ... ... .. 44



viii

CONTENTS

1.7 Conclusions . . . . . . . . .

Photon—photon pair production and pair annihilation 47
2.1 Introduction . . . . . . . .. . ... 47
2.2 Relativistic kineticequations . . . . .. .. ... ... ..... 48
2.3 Pair production and annihilationrates . . . . .. ... .. ... . 49
2.3.1 Integration over electron directions . . . . .. ... .. 15
2.3.2 Integration over photon directions . . . . . ... .. ...
2.4 Total pair production cross-section . . . . ... ... ... ... 55
2.5 Total pair annihilation cross-section . .. ........... 57

2.6 Boundaries . . . . . . ...

Synchrotron radiation 63

3.1 Introduction . . . . . . . ... 63

3.2 Kineticequations . . . . . . ... ...
3.2.1 Electronequation . . .. ... ... ... .........
3.2.2 Photonequation . . ... ... .. ...

3.3 Fokker-Planck equation forelectrons . . . . . . . ... .. ... | 68
3.4 Cyclo-synchrotron emissivities . . . . . . .. .. ... ... .. 69
Coulomb collisions 73
4.1 Introduction . . . . . . . . . ... 73
4.2 Relativistic kineticequation. . . . . ... .. ... ... .... 74

4.3 Landau collisionintegral . . . . .. ... ... ... ... ...
4.3.1 Non-relativistic treatment . . . . . . . . ... ... ...
4.3.2 Relativistictreatment . . . . . . . . . ... ... .. ...

4.3.3 Collision integral in the isotropiccase . . . . . ... .. 81
The kinetic code 89
Kinetic equations 91

5.1 Distribution functions . . . . . . . ... ... ..

5.2 General form of the kinetic equations . . . . .. ... ... .. 29

5.3 Escape probability formalism . . . . ... .. .. ... ......
5.4 Comptonscattering . . . . . . . . . .. . ..
5.4.1 Compton scatteringof photons . . . . . . .. ... .. ..
5.4.2 Compton scattering of electrons and positrons . . . . . 96
5.5 Photon—photon pair production and pair annihilation ..... . . 97
5.6 Synchrotronradiation . . . .. ... ... ... ..........

5.7 Coulombcollisions . . . . . . . . .. . . . .. ... 102



CONTENTS IX

6 Numerical treatment 105
6.1 The Changand Cooperscheme . . . . .. ... ... .......
6.2 Treatment of Compton scattering . . . . . . ... ... ..... 7 10

6.2.1 Scattering of electrons: separation of regimes . . . . 107

6.2.2 Scattering of photons and three-bin approximation . .. .109
6.3 Pair production and annihilation . . . . ... ... ... .. .. 111
6.4 Treatment of synchrotron processes . . ... ... ...... 12 1
6.5 Coulombcollisions . . .. ... ... . ... ... .. . ..... 114

7 Numerical tests 117
7.1 Non-thermalpairmodel . . . . . ... ... ... .. ... .... 117
7.2 Thermalization by synchrotron self-absorption. . . ...... . . 120
7.3 Gamma-ray bursts from stochastically

heatedpairs . . . . . . . . . . 122

[l Astrophysical applications 125

8 Gamma-ray bursts from neutron-loaded flows 127
8.1 Relativisticfireballs . . . . ... ... ... .. .......... 130
8.2 Physical model and simulationsetup . . . . .. ... ... .. 351

8.2.1 Implementation of expansioffects . . . . . . ... ... 136

8.2.2 Energy dissipation in neutron-loaded flows . . . . . .. 381
8.2.3 Initialconditions . . . .. .. ... ... ... ... ... 141
8.2.4 Calculation of the observed spectrum . . . ... .. ...

8.3 Numericalresults . . . . ... .. ... .. .. 146
8.3.1 Non-magnetizedflows . .. ... ... ..........
8.3.2 Magnetizedflows . . . .. ... ... ... .. ... 152

8.4 Conclusions . . . . . . . . . . e 157

9 Spectral states of accreting black holes 159
9.1 Modelsetup . . . . . . . . 160
9.2 Synchrotron self-Comptonmodels . . . .. ... ... ..... 116
9.3 Spectral transitions and the role of disk photons . . . ...... . 165
9.4 Conclusions . . . . . . . . . e 167

Conclusions 169

Appendices 172

A Compton scattering 173
A.l FunctionssjandS; . .. ... .... ... ....... . .... 173

A.2 Auxiliary functionsy;; and¥;; . .. ..o 174



A.3
A4

A5
A.6
A7

A.8
A.9

CONTENTS

Auxiliary functiong(é) . . . . . . ..o 176
Asymptotic expansions of functiong, andAj, in the Thomson

imit . . . 177
Eliminating cancellations in redistribution functen . . . . . . . 179
Boundaries . . . .. . ... 180
Relation between the Compton redistribution functiémspho-
tonsandelectrons . . . . ... ... oo 183
Isotropic Compton redistribution function . . . . .. .. .. . 183

Moments of the Compton redistribution function . . . . . .. 184



Introduction

Spectral energy distributions of a number of compact, miézge: high-energy
sources such as relativistic jets from active galaxies,rgarmay bursts, black hole
accretion disk—coronae are strongleated and shaped by Compton scattering,
synchrotron radiation and electron—positron pair prodacf(see e.g. Gierlinski
et al. 1999; Ghisellini et al. 2002; Zdziarski & Gierlihs04; Stern & Poutanen
2004). Understanding the physical conditions in thesecgsurequires detailed
modeling of the interactions between the particles andgimtwhich is not an
easy task. The basic problem is that we cannot compute raglabcesses from a
given a priori lepton distribution (e.g. Maxwellian or a pelaw), because it de-
pends strongly on the radiation field, which in its turn isedistined by the particle
distribution. Another problem is that the time-scales farious processesftir
by orders of magnitude. The energy range of particles antbpsaesponsible
for the emission also spans many orders of magnitude, withrdnt processes
making dominant contributions to the emergent spectrunifter@nt bands. One
of the main dificulties in calculating radiative processes over a wide eafgen-
ergies is that a particular radiative process may behavefisigntly differently
depending on the energy regime, the most well-known exaof@ach processes
being also the most important in relativistic plasma, ngn@dmpton scattering.
Depending on the energies of the interacting particles|eatren or a photon can
lose (or gain) a significant or negligible fraction of itstial energy in one scat-
tering. The former case has to be accounted for by the iftegattering terms in
the kinetic equations, while the latter necessitates théérePlanck treatment.

The treatment of radiative processes in relativistic pksimas been the sub-
ject of several works. There are two basic approaches: Moatk® methods (e.g.
Stern et al. 1995a; Pilla & Shaham 1997) and solving the aglekinetic equa-
tions (e.g. Lightman & Zdziarski 1987; Coppi 1992, 1999; Hlshin & Melia
1998; Pe’er & Waxman 2005; Belmont et al. 2008). Both haveér tbwn ad-
vantages and disadvantages. Monte Carlo treatment makeasyitto take into
account radiative transfeffects, on the other hand it usuallyfirs from poor
photon statistics at high energies. Another problem caeat very low energies,
where the optical thickness to synchrotron absorption @erormous. In the
kinetic theory approach photon statistics is not an isswesole dificulty lies in
solving the relevant integro-fierential equations. In this work we have chosen to
follow the second approach.
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Due to the dificulties in solving the exact Boltzmann equations of the tiine
theory, diterent simplifying approximations have been made in eanlierks.
They fall in three basic categories: ad hoc assumptionstaheparticle energy
distributions, approximate treatment oftérent physical processes, and simpli-
fied treatment of radiative transport. Various approxiovaiinvoked to simplify
the treatment of radiative processes at the same time hmitange of their appli-
cability. One commonly employed approximation concernsn@mn scattering,
which is assumed to take place in the Thomson regime (e.ge@ihi et al. 1998)
and is accounted for by a simple cooling term in the electqpragon. This sets
two restrictions that the photon energy in the electronfraste is smaller than the
electron rest energy and the average photon energy is mwentiban the electron
kinetic energy. Otherwise all photons would not contriliotelectron cooling, the
higher energy ones being downscattered via Compton sicgttdrhis means that
one is unable to treat cases when Comptonization approaelestion, which
may be relevant at high compactnesses, and to study eldudating by exter-
nal radiation. Other works account for Klein-Nishina catrens to the electron
cooling rate, but still neglect the ftlisive nature of the process when electron
and photon energies are comparable (Coppi 1992; Modersii @005; Pe’er
& Waxman 2005), which works towards establishing an equiln Maxwellian
distribution. Another useful approximation, when the gri terms describing
Compton scattering are accounted for, is to consider elatvistic electrons and
very low energy photons (e.g. Zdziarski 1988; Moderski eR@D5). This, how-
ever, becomes increasingly inaccurate when the electaoida suficiently low
energies.

The cyclo-synchrotron process also exhibits qualitayivditerent behavior
depending on the energy of the radiating particles. If thétemy particles are
relativistic, the emission spectrum is smooth and can spagral orders of mag-
nitude in energy, while in the non-relativistic case thergpés radiated at discrete
cyclotron harmonics and most of this radiation might bersjip self-absorbed.
In the first case, the radiating particle (electron or positmostly loses its energy
in a continuous fashion, while in the second case it can gaangy by absorbing
the cyclo-synchrotron photons emitted by other particlédss process is a dom-
inant particle thermalization mechanism in compact mageédtsources (Ghis-
ellini et al. 1988). Its proper account requires accuratésgities in the tran-
srelativistic regime, because electron thermalizatiarallg takes place at mildly
relativistic energies. Some codes for computing radigihaeesses in relativistic
plasma (e.g.eqrar described in Coppi 1992, 1999) neglect this process com-
pletely as the electrons aassumed to be thermal at low energies or account for
thermalization by Coulomb collisions only (Nayakshin & N&ell998). In other
approaches synchrotron thermalization is computed (@imiset al. 1998), but
Compton scattering is then considered only approximately.

Owing to the fact that proper treatment of transport proeeésr all types of
particles would make the task prohibitivelyfiitult, and partly due to our igno-
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rance of the exact geometry of the problem, itis rather compmactice to neglect
radiative transport altogether (e.g. Lightman & Zdziars887; Coppi 1992) and
assume spatially homogeneous and isotropic particleilaisions. In this case
particle and photon loss from the system is modeled in terivssnaple escape
probabilities. We also follow this approach here.

The main purpose of this project has been to develop a new ncaheode
that can overcome the aforementioneffidilties and accurately treat the evo-
lution of particle and photon distributions in relativispplasmas interacting via
Compton scattering, synchrotron emission and absorpglectron-positron pair
production and annihilation as well as Coulomb scatteriNg. approximations
have been made regarding the treatment of physical pragebses the code can
handle a practically unlimited range of partjgboton energies. The code can
treat particle thermalization by synchrotron self-absorp Coulomb (Mgller)
scattering as well as Compton scattering. It can also hgmalltecascades irre-
spective of their type (for classification of pair cascadsss Svensson 1987).
Good energy conservation, wide energy range as well as thesion of all the
most important radiative processes in hot plasma make tte applicable to a
large variety of astrophysical phenomena, two of which amestered in this
work.

The thesis is divided into three parts. In Part | we considgrasately all
the included physical processes. Starting from the gerferal of the kinetic
equations for electrons, positrons and photons, we retinéi@ for each process in
a form that is directly “usable”, which depends on the pexiiles of a particular
process. As a result, the resulting kinetic equations vahtain both integral
and up to second-orderftirential terms, accounting for both discrete as well
as continuous energy exchange mechanisms. The inclusieecohd-derivative
terms also enables us to treaffdsion in energy space and consequently particle
thermalization. We derive exact explicit expressions fibottlee relevant rates,
cross-sections, emissivities etc., without limitationgloe particles’ energies.

In Part Il we describe in detail the numerical code that soitree coupled
integro-diferential kinetic equations describing time evolution af fhoton and
lepton distributions. The numerical scheme was developgttwo main goals in
mind: accurate energy conservation and relaxation to coegilibrium distribu-
tions. The former goal necessitates special care for sootegses. For example,
extreme caution has to be taken when dealing with synchratetf-absorption,
because of cancellation of large, almost equal terms, wbgchresult in inac-
curacies and huge energy sinks. Also, accurate treatmefmipton scattering
requires the substitution of Fokker-Planckfdiential terms instead of integral
terms in regimes where the energy ghiss in a single scattering becomes small
compared to the energy bin size. The ffmgents in the Fokker-Planck equation
in this case are computed exactly from the moments of thgnaktequation, en-
suring energy conservation. Numerical simulations sh@at ¢lir code conserves
energy with about 1% accuracy. We present an extensivagestihe code using
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some problems described previously in the literature. €®ses involving brems-
strahlung can be easily added to the code, while for the tondiconsidered in
this work, they are not important.

In Part Ill we consider two astrophysical problems where kimetic code
finds its application. First, we study radiative processerelativistic diverging
outflows under conditions characteristic of gamma-raytsurBhis is done in the
framework of a so-called neutron-loaded fireball model gBerodov 2010). An
initially optically thick radiation-dominated flow acce&es to relativistic veloci-
ties at the expense of its internal energy. At a certain saidfie proton and neutron
components of the flow decouple, which can lead two embedded fivith dif-
ferent Lorentz factors. Nuclear collisions in such compmbtiows can dissipate
a significant fraction of the total flow energy. Detailed nuite modeling of
radiative processes in these flows lead to prompt emissiectispresembling the
Band spectrum (Band et al. 1993), with hard low-energy sofégnificant GeV
emission is also predicted, along with a Lorentz-boostethaation line.

As another application we study the radiative mechaniswisgrise to difer-
ent spectral states in black hole X-ray binaries. We distus®rigin of the dra-
matically diferent distributions of the Comptonizing electrons in vasictates.
Studying the interplay between electron thermalizatiahraaliative cooling lends
support to the scenario in which spectral state transittwaghe result of a vari-
able amount of soft photons entering the active region froendool accretion
disk, associated with a changing inner disk radius.
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Chapter 1

Theory of Compton scattering by
anisotropic electrons

1.1 Introduction

Compton scattering is one of the most important radiatice@sses that shapes
the spectra of various sources: black holes and neutros ista-ray binaries,
pulsars and pulsar wind nebulae, jets from active galaciaen and the early
universe. Compton scattering kernel takes a simple fornteifteons are ultra-
relativistic with the Lorentz factoy > 1 (Blumenthal & Gould 1970). In a gen-
eral case, when no restrictions are made on the energieotdrphnd electrons,
Jones (1968) derived the kernel for isotropic electronspadons. The formulae
there contain a few misprints, but even by correcting these €.9. Pe’er & Wax-
man 2005) they cannot be used for calculations because ahbhenof numerical
cancellations (see e.g. Belmont 2009). An alternativevd&an to that kernel was
given by Brinkmann (1984) and Nagirner & Poutanen (1994) sinowed how to
extend the numerical scheme to cover all photon and eleetmergies of interest
in astrophysical sources.

In real astrophysical environments, the radiation fieldsdnet need to be
isotropic and a more general redistribution function isuiesfl to describe angle-
dependent Compton scattering. Nagirner & Poutanen (19aéhded previous
results to the situation when the photon distribution carelpeesented as a linear
function of some polar angle cosine (Eddington approxiomgfideriving an an-
alytical formula for the first moment of the kernel. Aharami& Atoyan (1981)
were the first to derive a redistribution function for aréiiyr photon angular de-
pendence (see also Prasad et al. 1986). Kershaw et al. (A88®&ershaw (1987)
have developed numerical methods to compute the keffieiemtly and with a
high accuracy. All these works neglect thiféeet of photon polarization.

Nagirner & Poutanen (1993) have derived a general Comptattesing redis-
tribution matrix for Stokes parameters assuming an isatrelectron distribution.
A general relativistic kinetic equation incorporating #téects of induced scatter-

7



8 CHAPTER 1. THEORY OF COMPTON SCATTERING

ing and polarization of photons as well as electron polé#onaand degeneracy
has been derived by Nagirner & Poutanen (2001).

In this chapter we propose a method to extend previous setulthe case
where the electron distribution is no longer isotropic, tamh have weak aniso-
tropies which can be represented as a second order polyhoitie cosine of
some polar angle. The proposed formalism can find its agpitén a number
of astrophysical problems. The distortion of the cosmicrowave background
(CMB) caused by the hot electron gas in clusters of galaxies the kinematic
and thermal Sunyaev-Zeldoviclffect) is an obvious application. The electron
distribution, isotropic in the cluster frame, can be Loraméinsformed to the CMB
frame, resulting in a dipole term linear in cluster veloatyd a small quadrupole
correction. Compton scattering then can be directly coegpirt the CMB frame.
Another possible application concerns the models of outflgvaccretion disk-
coronae or jets (Beloborodov 1999; Malzac et al. 2001). dfdbtflow velocities
are non-relativistic, the radiation transport can be aber&id directly in the ac-
cretion disk frame following recipe by Poutanen & Svenssb®96), with the
Lorentz transformed electron distribution.

Weak anisotropies in the electron distribution can aridagh-energy sources
with ordered magnetic field, because of the pitch angle-ulégece of the syn-
chrotron cooling rate aridr anisotropic injection of high-energy electrons (e.qg.
Bjornsson 1985; Roland et al. 1985; Crusius-Waetzel & Lek@98; Schopper
et al. 1998). An anisotropic electron distribution is alseeay natural outcome of
the photon breeding operation in relativistic jets with tbeidal magnetic field
(Stern & Poutanen 2006, 2008), because the electron-pogirs born inside
the jet by the external high-energy photons move perpefatiguo the field.

Our method is also extendable to the polarized radiatiomgusie techniques
developed in Nagirner & Poutanen (1993). Itis also in pplepossible to calcu-
late the scattering redistribution function in the casemie electron distribution
is expressible as an arbitrary order expansion over the pote cosine. Unfortu-
nately, in the latter case the analytical expressions be@xiremely cumbersome
and the advantage over direct numerical integration besamall.

Although here we consider only photon scattering it is algssble to apply
the same method for electrons interacting with the phototise case when pho-
ton angular distribution is expressible as an expansiowwgps of the polar angle
cosine. This can be of interest only in the deep Klein-Niah#egime where the
electron can lose or gain a large fraction of its initial gyen one scattering and
continuous energy loss approach is not applicable.

This chapter is organized as follows. In Section 1.2 we thige the rela-
tivistic kinetic equation for Compton scattering and detimeredistribution func-
tion and total cross-section. The expressions for the totas-section, the mean
energy and dispersion of scattered photons, and the raliptessure force are
given in Section 1.3. The exact analytical formulae for tedistribution func-
tion for mono-energetic anisotropic electrons as well gsr@amate formulae
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valid in the Thomson regime are derived in Section 1.4. Wegntthe numerical
examples of redistribution functions in Section 1.5, thatreistic theory of the
Sunyaev-Zeldovichféect is developed in Section 1.6. We summarize our findings
in Section 1.7.

1.2 Relativistic kinetic equation

Let us define the dimensionless photon four-momentum agx, x} = x{1, w},
wherew is the unit vector in the photon propagation direction are hy/mec2.
The photon distribution will be described by the occupatoambern. The di-
mensionless electron four-momentunpis= {y, p} = {y, pQ} = y{1, 5Q}, where

Q is the unit vector along the electron momentymandp = +/y2 -1 are the
electron Lorentz factor and its momentum in unitsnet, andg = p/y is the
electron velocity in units of speed of light. The momenturstiglbbution of elec-
trons is described by the relativistically invariant distition function fe(p) (see
Belyaev & Budker 1956; Nagirner & Poutanen 1994).

The interaction between photons and electrons via Comtatitesing (in lin-
ear approximation, i.e. ignoring induced scattering aedtebn degeneracy) can
be described by the explicitly covariant relativistic Kiseaquation for photons
(Pomraning 1973; Nagirner & Poutanen 1993; Nagirner & Poenal994):

r2
X Yn(x) = ffTTX—lé“(Eﬁzl—E—z)F

X [n(xa) fe(pr) — n(X) fe(P)] (1.1)

whereV = {g/cot, V} is the four-gradient, is the classical electron radius,is
the Klein-Nishina reaction rate (Berestetskii et al. 1982)

2
F:(E—i) +2(}—£)+é+é, (1.2)
& & & &) & ¢
and
5291')—(129')—(’ §1=91->_<=9-z<1 (1.3)

are the four-products of corresponding momenta. The seequdlities in both
equations (1.3) arise from the four-momentum conservdtian The invariant
scalar product of the photon four-momenta can be writtehaelaboratory frame
as well as in the frame related to a specific electron

q=X-X =XX(1—pu) =&E(L—po) =& - &1, (1.4)

whereu = w - w, is the cosine of the photon scattering angle in some frame and
Uo IS the corresponding cosine in the electron rest frame.
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In any frame, the kinetic equation can be also put in the ukuat of the
radiative transfer equation (Nagirner & Poutanen 1993):

(%% b v) n(X) = o1 Ne S(X) n(¥)

+ O'TNe;—L(f dexlfdzwl R(Xl — X)n(Xl), (15)
0

whereNg is the electron density in that frame. Here we have definegbliogon
redistribution function

3 1 (dpdd
ROG = X) = [P i p)Fo*(p, +x, - p-%)  (1.6)
167Ne) 7 71 ]

and the total scattering cross-section (in units of Thontsoss-sectiowrr)
— 31 1fd3pd3p1 d3X]_

- - -~ - |2 4 —p—
S0 =Teriix) 5 % WP FOR X -pn. (W)

1.2.1 Electron distribution and scattering geometry

Let us now consider a specific frarie Our basic assumption is that the anisotropy
of the electron distribution in this frame can be expressea second order poly-
nomial expansion in the cosine of the polar angle in somedinate system

(I1, 12, 13): 5
2 4(p) = elvond = > KIPere). (L8)

Ne k=0
whereNe is the electron density in franig, n, = Q - I3 is the cosine of the polar
angle of the electron momenturBy(ne) are the Legendre polynomials, and we
now switched to the dimensionless distribution functify, ne) normalized to
unity:

f d?Q f fe(y,ne) p°dp = 1. (1.9)
The momentsfy, f; and f, determine the energy spectrum of electrons and the

relative magnitudes of the isotropic and anisotropic congmbs. The distribution
function for mono-energetic electrons of enefgycan be described by

1 f f
W) = iy ) |14 et £Pa0). (20)

where the ratiod;/ fo and f,/ fy are constants.
The directions of photons in this coordinate system (searEid.1) are given

by
w = 1-n%cos¢ i+ \1-n?sing |, +nl3, (1.11)
vi- 75 COSp1 I + 1 =nisings I+ I, (1.12)

S
I
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A

Figure 1.1: The scattering particles’ momentum vectorstaedsectorl;. Note
that the shown angular variables are the cosines of thectrgpangles.

so that the cosine of the scattering angle is

p=w o=+ 1-17? /117 cose - ¢1). (1.13)

1.3 Total cross section and mean powers of energies

1.3.1 Total cross-section

Let us simplify the expression for the total cross-sectidie follow here the
approach described in Nagirner & Poutanen (1994). We rewé cross-section
as

w00=5 [0 109 2 (1.1
where 31 [ dps i,
So(é) = ) o 8*(p, + X — P~ X). (1.15)
Using the identity
Syr+ X —y =X =y16(x-(pP+X -x-p) (1.16)

and taking the integral ovey, in equation (1.15), we get

dX]_
16”ff—F6 (X, (p+X) - x-p)

_ 1@@ f €10¢1 duo Ao F 6 (&1 + £61(1— o) — €]

-3 F dé, (1.17)

862 Jesav2s)

S(€)
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where we used invariantdx,;d’w, = &:dé; dug dgy and the fact thaF does
not depend on azimuthal angfg. SubstitutingF from equation (1.2) we get
(Berestetskii, Lifshitz, & Pitaevskii 1982; Nagirner & Planen 1994)

) = = e )
8 (1+2)
Puttingé — X, we, of course, get the total Klein-Nishina cross-sectiond
photon of energy on electrons at rest.

To obtain the total scattering cross-section on an anipmedectron distribu-
tion, we have to calculate the angular integrals over inognelectron directions
in equation (1.14). We introduce the cosines between electromentum and
photons:

(1.18)

4+(§—2—§)In(1+2§)+2§2

(=Q 0w, H=Q w (1.19)
so that
E=Xy—-pL), &= Xy — pdr). (1.20)

We choose the spherical coordinate system and measurel#tteapgle from the
direction of thenitial photonw, we get

0 1 2n
2
S-S [0 [ @ [0t @2
0 -1 0

Azimuth @ is now defined as the fierence between the azimuths of the electron
momentum direction and the vectigrin a frame withz-axis alongw. The angular
variablen, in the expansion (1.8) is expressed in this frame as

Ne=nl + \1—1n?+1-?cosd. (1.22)

The physical meaning of equation (1.21) can also be undmistove consider
a monoenergetic beam of electrons aldagaxis: fo(y,ne) = (e — 1)5(y —
Y0)/(2rpy). Then
So(x, 17) = (1 - Bn) so(X), (1.23)

wherex’ = xy(1 - Bn) is the photon energy in the electron rest frame (we omitted
subscript 0 iny andp). The factor 1- Bn in equation (1.23) accounts for the
reduced number of collision per unit length.

When calculating the azimuthal integral in equation (1.2#)just have to
integratePy(ne) with 7. given by equation (1.22). The properties of the Legendre
polynomials give us the average

P«(17¢) = Px(17) Pk(2), (1.24)

so that the averaged distribution function becomes

_ 1 (& 2
B =52 [ 00 Lt = Y KOPGPG.  (129)
k=0
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log $(xy) = 10gXod(X.Y)

r
1

©

i

5 \ s -
-0.04— NN S -
SEEAN

10° 10* 10? 10 107

Figure 1.2: (a) Total cross-sectig, = Ago for isotropic mono-energetic elec-
trons of various momenta = 0.1, 1, 10, 10?, 10° (from top to bottom, dot-dashed,
solid, dotted, dashed, and triple-dot-dashed curves)asctidon of photon energy
X. (b) Relative correction to the cross-section arising ftbedipole term in the
electron distribution (1.8) for the sangeas in panel (a). At smab the curves
approach the asymptotic value in the Thomson lingit 3. (c) Relative correction
to the cross-section arising from the quadrupole t&pai Ago.
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The cross-section now can be written as

2 co
S =40 Y Pula) [ Py dy fedalx ) (1.26)
k=0 1
where
1 1
dolx 1) = 5 [ PUO € i) ek (1.27)

Changing the integration variable and express$tathroughé using equation (1.20),
we get

K
Aw(Xy) = Z Brik Xon, (1.28)
n=0
where
X(y+p) - g
Xon(X,y) = fo(y_p) M 5(é) dé. (1.29)
and
boo = 1 boy= 2. by=-— (1.30)
00 ) 01 p7 11 p7 .
1 5 3y 3
b2 = 2_p2(27 +1), b12=—E, bzz=2—p2

The zeroth functio\gy = yqo coincides with the functio®o(x, y) from Nagirner
& Poutanen (1994). When electron distribution is isotrdpe. f; = f, = 0), ex-
pression (1.26) for the total cross-section is reduced taeon (3.4.1) from Na-
girner & Poutanen (1994) and the dependence obviously disappears. Func-
tions yo, Of two arguments can be presented through the functions efogu-
ment:

2+n u=y+p
xon(Xy) = 20 mlﬁnﬂ,o(xu) u:y_p, (1.31)
where
i+1 i
Yio(§) = e f; t'so(t)dlt. (1.32)

The explicit expressions for the functiopg(¢) (i = 1, 2, 3) can be found in Ap-
pendix A.2 (see also Nagirner & Poutanen (1994)). Thus tta tooss-section is
given by a single integral over the electron energy (1.2@) &il functions under
the integral given by analytical expressions. Numericédudations of functions
Aok can be separated into three regimes: (1) in the Thomson eggim« 1, the
series expansion (see Appendix A.4) can be used; (2pfer 1, butx not suf-
ficiently small for regime (1), we numerically take the intaign equation (1.27)
using 5-point Gaussian quadrature to reach accuracy he#erl%; (3) in other
cases, we use the sum in equation (1.28) and analyticalssipres (1.31) foxon.
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For mono-energetic electron distribution of Lorentz fagtgiven by equation
(1.10), we can introduce the cross-section analogouslguateon (1.26):

2
f
SO0y = ) 1 PmAa(x ). (1.33)
k=0

For isotropic mono-energetic electrons, the total cresgisn is shown in Fig-
ure 1.2(a). The relative corrections arising due to theldipad quadrupole term
in the electron distribution are shown in Figures 1.2(b) ar{c), respectively.
These have to be multiplied by the angle- and, possibly, tegy-dependent
factor Px(n) fx/ fo to obtain the final correction. In the Thomson limit, at small
xy < 1, the cross-section takes the form (see Appendix A.4)

_ 1f
%X y.n) ~1- =2np, (1.34)
31,

where the correction to unity term can be easily obtainedveyaaying the trans-
port cross-section over electron directions (i.e. integga(1 — 8¢)ne Over the an-
gles). This corresponds to the flattening in Figure 1.2(oatAqco = —8/3. The
correction from the quadrupole term in this regime as wefbasion-relativistic
electrons becomes negligible:

4
Ao2/Ago = 15 B (xy). (1.35)

1.3.2 Mean powers of scattered photon energy

In some situations, the full relativistic kinetic equatsocan be substituted by
the approximate one obtained in the Fokker-Planck appratamn. This requires
knowledge of various moments of the redistribution funefisuch as total cross-
section, the mean energy and dispersion of the scattereédmh(see Nagirner &
Poutanen 1994, Vurm & Poutanen 2009). It is often time-comnsg to compute
numerically the integrals of the redistribution functiamdanstead direct calcula-
tions of the moments are preferable. Below we obtain arealy&xpressions for
the mean energy and dispersion of the energy of scatteredmshim framekE as a
function of the initial photon energyand the direction of its propagation relative
to a symmetry axis of the electron distributin

Following Nagirner & Poutanen (1994), we define the mean @fgys of en-
ergy of scattered photons:

_j— l j d3p
X]_SO(X) = ;( <X1>SO(§) f fe()/, 776) 7’ (136)
where now
i 31 d3p1 d3X1 i
] _ - ] 4 _ _
(X&) = 602) 71 x Fx o' (p, +x-p-X) (1.37)
31 j+1

- 167 & X dxdPw; F 6{xq[y + X — w1+ (pQ+Xw)] — &}
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Averaging over photon directions

Quantities (1.37) are not invariants (except foe 0), and we have to compute
the scattered photon energy in a certain frame, which wesshtmbe framee.
Because of the additional terr) under the integral, a simple change of variables
to the electron rest frame as in equation (1.17) is not ptesditistead, we use the
o-function to take the integral ovex:

: 3 1 )
(Xs(€) = o2 f X2 d?w; F . (1.38)

Now we change the variables to those in the electron restefr@ith subscript
0). We choose the coordinate system with the polar axis aloaglirection of
the incoming photorw,. In this frame, the cosine of the angle between the
electron momentum and the incoming photorygs The cosine of the angle
between the outgoing photon momentum and the electron msitle= oo +

,/1—(3,/1—;1300&{)0.

We use invariants?d?w; = ¢2dugdgo and the energy conservation law in the
electron rest framé; = £/(1+£&[1 - uo)), to get (see Nagirner & Poutanen (1994))

Xidza)]_ = dé‘:ld(ﬁo (139)

Finally, we have

j 3 1 =
<X1>So(§)zﬁsz f;l+2§)|:d§1fo X; dpo. (1.40)

Becausé; is the energy of scattered photon in the electron rest frémd)oppler
effect gives us

X1=&1(y + Pd10) :fl()"" Ploto+Py1-— ZS\/ 1— 4 005¢0) , (1.41)

where we now can substitute
1 1 X
/J():].-i-———, pé'O:——’y, (142)
& & '3

which are consequences of the conservation law and of trentotransformation
x = &(y + plo), respectively. The terms containing a linear combinatibsquare
roots and cog, will disappear after averaging oves.

We now introduce moments of the invariant cross-section

(= j
si(¢) = g2 f;(h%) & F déa. (1.43)
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For j = 0, we get of course the total cross-sectgrgiven by equation (1.18).
Nagirner & Poutanen (1994) derived the corresponding esivas forj = 1, 2:

3 4, 3 2
sié) = 8—§3(|§+§§2—§f—§R§—%R?)’ (1.44)
() = %(9+R§+3R§+3R§’), (1.45)

wherel; = In(1+ 2¢), andR: = 1/(1 + 2¢).
For the mean energy of the scattered photon we have then

(X2} () = ¢ [y Si§) + xS(&)], (1.46)

and for the mean square of energy

(X) So(&) = Y* €2 Su(€) — ¥ XE S5(€) + X S(¢) — €2 S(8), (1.47)

where
Si€) = [20)-s(6)]/é  SAé) = [s1(6) - Su)] /¢,
SE) = [s1é) - =076 Saé) = [Sué) - S8(9)] /¢,
S = 3S(é) -4S(8), Sié) = () - Xul9)/2,
S = s(8) -35(8). (1.48)

All functions S;(¢) are elementary. In addition, they are defined in such a way so
that not to become zero at= 0. The series expansion of functioesindS for
small arguments are presented in Appendix A.1.

Averaging over electron directions

We need to integrate in equation (1.36) over anisotropicteda distribution. We
follow the derivation of the total cross-section that leemhi equation (1.21) to
equation (1.26). Representing integral over electron nmumed3p = p?dp d/ dd
we get:

S = 4r0 Y PO [ prdy apen,  (149)
k=0
where )
l .
M) = 5o [ PUOECD RO =Y buxn (150)
- n=0
and 1 X(v+p) 1
00N = g [ Osle) et (1.51)

Functionsyjo = Ajo coincide with functionst;(x,y) introduced by Nagirner
& Poutanen (1994), while functiong, are given by equation (1.31). The explicit
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Figure 1.3: (a) Mean energy of scattered photons in unith@fricident photon
energy: *°(x, y)/X = A1o/Ago as a function ofx for isotropic mono-energetic
electrons of various momenga = 0.1, 1,10, 10%, 1¢* (from bottom to top, dot-
dashed, solid, dotted, dashed, and triple-dot-dashe@survhe asymptotic value
at smallx in Thomson approximation is{Lg‘pz. (b) A correction to the mean en-
ergy (in units ofx;*°) arising from the linear term in the electron distributidng)
with f;/f; = 1. Solid, dotted and dashed curves correspongfer 1,10, 100,
respectively. The curves from top to bottom correspongl o—1, -0.5,0, 0.5, 1.
At small x, the curves approach the limiting value given by equatio§)L (c)
Same as (b), but for the quadrupole term in the electroniloligion (1.8) with
f,/fo = 1. These are even functions @fthe curves from the bottom to the top
correspond to; = 0,0.5,1. At smallx, the curves approach the limiting value
given by equation (1.59).
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expressions for the function, for j = 1,2 (which are analogous to functiol§
and¥, from Nagirner & Poutanen (1994)) can be obtained using esioa for
mean powers of energies (1.46) or (1.47):

1 8" u=y+p
xin(Xy) = 2p 341 [y P2in1(XU) + XWouin2(XU)] , (1.52)
U=y=-p
1 u4+n u3+n !
XZn(X, 7) = % [7 4+ lIl3+n 4(XU) 73 \P2+n,5(xu)
u2+n A+n u=y+p
. 2+nwhmuw—4+ﬁmmxwﬂ )
u=y=-p
where
+1 .
¥ii(é) = le ft'sj(t)dt. (1.54)
These are related to functions
i+1 :
$ij(&) = e f:tlsj(t)dt, (1.55)

because functionS; are expressed through. The explicit expressions for both
type of these functions as well as their series expansiaraiall arguments are
given in Appendix A.2.

As in the case of function&y, for calculatingAjx, we consider three regimes:
(1) xy < 1, when we use the series expansion (see Appendix A.4); (D o 1
we numerically take the integral in equation (1.50) using&&#an quadrature; (3)
in other cases, we use the sum in equation (1.50) and aralgtipressions for
Xjn-

For mono-energetic electron distribution (1.10) of Loeefdctory, we can
introduce the mean powers of photon energy analogouslyuate (1.49):

2
w%u%)—xz ~ Pu(0) A (1.56)
k=0

The mean energy of scattered photons for such electrons doattering act is
given by the ratio of equations (1.56) and (1.33). It is shanwRigure 1.3(a). In
the low-energy (Thomson) limit the energy gain factor isegiby a well known
expression°/x = 1+4p?/3, which translated t§y? atlargey. The relative cor-
rections arising due to the dipole and quadrupole termsareléctron distribution
are shown in Figures 1.3(b) and 1.3(c), respectively. Uasygnptotic expansions

of Aj in the Thomson limit (see Appendix A.4), we get the asymptedlue

(xy.m) _ 7 (1+37) = 37 g+ £ P2
ISO(X, ’)’) y2 (1 + 3'32)( 3,3 177)

(1.57)
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Thus in non-relativistic limi < 1, the correction is negligible. In the relativistic
limit v > 1, the relative corrections arising from the two terms are

f
Xi(xy.n) _ 1- A
——iso - 1f_ 2 (1'58)
X1 (X y) 1-34m
X1 (X, v,1) 1f
———= = 1+ ——P>(n). 1.59
=0 ) 10T, 2(1) (1.59)

1.3.3 Energy exchange and dispersion

The diference of the photon energies before and after scatterixgis of course
just the energy transfer to the electron gas. For the fixetedrejween electrons
and incident photons(and fixed electron energy), the energy loss averaged over
the directions of scattered photonxis (x;). The product X — (X;))Neot So(€) is
then the energy loss on a unit length. From equation (1.4&amesasily get (see
also Nagirner & Poutanen (1994)):

(X=(x1)) 50(€) =X%0(€) = ¥ESu(§) - X¥S(8) = (X + X - ¥E)Su(¢).  (1.60)

The corresponding energy loss (per unit length and in Nids;) averaged over
the electron directions (and integrated over electronggegy becomes [see equa-
tions (1.26) and (1.49)]:

2 00
(x-S0 1) = 47x Y Puli) [ Pyl f (o= An). (L61)
k=0 1
The heating rate per unit volume is then

E:Mﬂ1[Wj}%HMwwl—%%ﬂxm (1.62)

wherel (X, w) is the specific intensity of radiation in a given directiofhis ex-
pression can be positive (so called Compton heating) whepltotons typically
have larger energies than the electron gas, or negative fdoncooling) when
one considers cooling of the relativistic electron gas Wy rsaliation.

The dispersion of the scattered photon energy is given bysbal expression

D(x) = X2 — %12, which of course depends on the electron momentum disimibut
For mono-energetic electrons we can define the dispersion as

D(X7,7) = X%y, 1) = X 2(% 7, ), (1.63)

wherex_i(x, v,n) are given by equation (1.56). The dispersion for isotregbec-
trons is shown in Figure 1.3(a). The low-energy (Thomsanjtlfor x < 1/y is
(see Nagirner & Poutanen (1994))

— 2
D(X,y) = X¥*—

45@3f—8)&. (1.64)
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Figure 1.4: (a) Dispersion of the energy of scattered ptso(@m units of x?)
for isotropic mono-energetic electrons pf= 0.1,1, 10,10, 10® (from bottom
to top). The asymptotic value &/x? at smallx in the Thomson approximation is
4%5(23;/2 - 8)p?. (b) A correction to the dispersion (in terms of the isotoogiian-
tity) arising from the linear term in the electron distrilmut (1.8) with f;/fy = 1.
Solid, dotted and dashed curves correspond to 1, 10, 100, respectively. The
curves from top to bottom correspondric= —1,-0.5,0,0.5, 1. (c) A correction
to the dispersion arising from the quadrupole term in theteda distribution (1.8)
with f,/fo = 1 for the same andn as in panel (b). These are even functiong,of
the curves from bottom to top correspondjte 0,0.5, 1.
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The relative corrections arising due to the dipole and quaale term in the elec-
tron distribution reach about 50 % and are shown in Figuréé).and 1.4(c),
respectively.

1.3.4 Radiation force

Now we would like to derive analytic expression for the raidiaforce acting on
the electron gas. Nagirner & Poutanen (1994) have develapetnalism appro-
priate for isotropic electron distribution, when the awgrd transferred momen-
tum is along the momentum of the incoming photons, becaus@ecfymmetry.
For the electron distribution described by equation (&, momentum is trans-
ferred in the plane containing the initial photon momentunth the symmetry axis
I3. If the incident photons are axially symmetric arodgdhen obviously, the to-
tal momentum transferred to the electrons has to be patallglby symmetry.
We derive here more general formulae for the total momentanmsterred by a
beam of photons propagating along directioiisuch asw - I3 = ), as well as its
projections td; and perpendicular direction.
Let us introduce the vector basis:

|3—na) 0))('3

e(w, l3) = . &w,l3) = , 3= w. (1.65)
V1-1n2 V1-1n2
In a single scattering act the momentum transferred is
Q = Xw - X1w1. (1.66)

The components of the momentum transferred to the elecasmaigng and per-
pendicular taw are:

X—Xi w1 - €3 = X— XU, (1.67)
—Xiw1-€ = —Xlu. (168)

V1-172

Analogously to equation (1.36), we define the mean trarediarromentum as

Qs
Q

_ 1 o2
Q%00 = 3 [(@w(@)€ flrn) T (1.69)
where
_ 31 d3p1d3X1 4
(Q)s0(é) = 62 ) 7 % FQd&'(p+x,-P-X (1.70)
31

= Torz ) adndorF Qotuly + X~ ws (P xw)] ~£).
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Averaging over photon directions

Let us introduce a vector basis defined by the photon andretestomenta:

Q-lw w X Q
,Q) = , ,Q) = , = w, 1.71
e(w, Q) Niwwe &(w, Q) Nwe & =w (1.71)

wherel = w- Q, thereforeQ = /1 - 2 e,(w, Q) + ¢ 3. Fixing the angle arccas
between the electrons of momentyr® and the incident photon momentum and
averaging over directions of scattered photons, we carhgetnean momentum
transmitted in the directiow:

(Q3) So(¢é) = (X = X1) So(€) + (X1 (1 — 1)) So(€)- (1.72)
The first term is given by equation (1.60), the second term is

(L 1)) (&) = f (1 - WF o,

1672
3
= 16nxE ffl (1 — po) F dé1 do (1.73)
3 &

2
= (€ -&)Fdé =~ [So(f) S1&)] = = Sa1(é),

8X&? Jejar2e)

where we have used the invariant given by equation (1.4) hadged the vari-
ables according to equation (1.39). Thus, for the fixed sdecind photon ener-
gies and the angle between their momenta, the mean momerdosmiitted to
the electron gas in the direction of the initial photon prggiEonw, in accordance
with equations (1.48), (1.46) and (1.73), is (Nagirner & Raoen 1994)
2
Q@S- sl = xe-ve+ S)s@.

In contrast to Nagirner & Poutanen (1994), we are now intete® know the
total momentum transfer. Obviously, by symmetry, it hasdal the ©, w) plane.
Averaging expression (1.68) f@; over angles is not easy, but we can compute
the momentum transferred along the electron momen@wre X — X.4;. Using
identity x;¢1 = (yx, — &1)/ p and substituting equation (1.41) and (1.42), similarly
to equation (1.40), we get

31 2
(X1{1)S(¢) = Ton 22 ﬁl . F dflfo X141d¢o

: FeE el
- = Fd XY X
862 Jejreas) SKlp[(f £ & frr|y '3

- ;(yx+7?—y 6)81@) p(V—E)So(f)

- Z[Pes© e mes -5, (1.75)
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and using identity/ = (yx — £)/p, we finally obtain

1
(Q)%() = (¢~ xan%o(@) = < (rx+ yxE- V€= £)810). (L.76)

The momentum along (w, Q) is then simply

(Qa) — £(Qs) &
N

2 3
- Sll_(f){z (6—2y5;+%) - pVI-Zes©. @)

Thus the total transferred moment@averaged over directions of scattered pho-
tons can be decomposed into two components along basigsecto

(Qus(¢) = &)

(Q) =(Qy) er(w, Q) +(Q3) €. (1.78)

Averaging over electron directions

As in previous sections, we choose to measure the azimuthieoélectron mo-
mentum® in the frame defined by equations (1.65) from the projectiovector
I3 onto the plane perpendicularda Therefore,

(Q) = (Qu) [cosD ey(w, |3) + SIND &x(w, I35)] +(Qs) €. (1.79)

The total momentum transfer averaged over the electroniitibn is obtained
from equation (1.69):

_ 1 [ 1 2n
IS 7) = - f pdy[ e fo 4D (Qs(@) fely.me).  (1.80)

X

Obviously, the component alorgg(w, |3) becomes zero, ak is an even function
of ®. The term alonge;(w, I3) involves integration off, over azimuth with the
weight cosD, and its averaged value is

2
_ f
f.cosd = ; k(k—il)Pﬁ(n)Pﬁ(g), (1.81)

whereP;. are the associated Legendre functions:
Pi(u) = V1-12, P3u)=3uVl-u2 (1.82)

It is worth mentioning that the isotropic component of thecélon distribu-
tion f, does not contribute to the momentum transferred perpeladitvw by
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symmetry. Substituting expression (1.77) into equatiaBQ), we get the first
component of the vector

Q% n)—4ﬂXZP o [ Py faix). (1.83)
where
1 1
MO = e | PO @s@d a8
Changing the integration variable §pand introducing a set of functions
1 fx(7+p)
n(%Y) = 50— 1-22(Quso(¢) €M d
) = 5 | VIS Qo) £ de
1 1 u3+n 4+n
= —W,, 2 Ys,
Zyp p 3+n 2 nl(Xu) 74 3 n,l(Xu)
u5+n u=y+p
+ ¥iin 1(xu)] ,h=01, (1.85)
S+n u=y=-p
we get
AL = Los AL——£( ) (1.86)
1= 2)(10’ 12~ 2p YX10 ~X11) - :

Now let us evaluate the component of vector (1.80) alepngBecaus€Qs)
does not depend on azimudh the azimuthal integration just gives the averaged
electron distribution given by equation (1.25). Thus we get

2
Qe =anc Y Pula) [ Py drfc (o= Buc+83). (187
k=0
where
1
Ajl% y)-— PO € (xa(l - p))sol¢) dg = Z Onk X (1.88)
-1
and
%) L fxw (1 1) (&) €™ d
* X, — - X _ &) +
Xx7) = g | (o) () £ de
1 u*n u=y+p
_ %p4+aﬁmﬂmhwm,n:QL2 (1.89)

For isotropic electron distribution, the only function oteérest isA7, which
coincides with functiont’(x, y) introduced by Nagirner & Poutanen (1994). Now
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Figure 1.5: (a) Average momentum transferred to the elecyas per scat-

tering 6'30 (in units of x) for isotropic mono-energetic electrons (with =

f, = 0). Curves from bottom to top correspond to the electron nmiene
p = 0.1,1,10 10% 10°. The asymptotic value at smatlin the Thomson ap-
proximation is 1+ 2p?/3 [Nagirner & Poutanen (1994); see equation (1.95)]. (b)
The momentum transferred alomgfor anisotropic electrons with,/fy = 1 in

units of the isotropic quantit@'so. Solid, dotted and dashed curves correspond
to p = 1,10 100, respectively. The curves from top to bottom correspimnd
n=-1,-05,0,0.5,1 (pink, green, black, red, and blue curves, respectivéty).
Same as (b), but for the electron distribution (1.8) withdn@drupole term with
f,/ fo = 1 for the same andn as in panel (b). These are even functiong,ahe
curves from the bottom to the top correspongte 0, 0.5, 1. The flat parts of the
curves correspond to the Thomson limit given by equatio®s)1.
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combining equations (1.83) and (1.87), we get the momentanster along the
symmetry axis of the electron distributibfand perpendicular to it:

Q\ = V1—77261+7763, (1.90)
6J_ = —7761"‘ ‘V1—77263- (1.91)

Expressions (1.87), (1.83) and (1.90) give the momentunsteared to the elec-
tron gas (in terms of one integral over the electron enengylgao, perpendicular
to that direction as well as along vecigrand perpendicular to it.

Similarly to equation (1.62), we can also get the two comptsmef the mo-
mentum transfer rate per unit volume:

. Ne dx -
Pis= O-Tf7fd2w|(x’77) Q13 So(X, 7). (1.92)

C

For mono-energetic electron distribution of Lorentz fagtgiven by equation
(1.10), the momenta transferred alangnd perpendicular to it are

2

_ f .

QR y.m) = XY Puln) (Ao~ Auc+Ap). (1.93)
k=0 0
2

_ f

Quser.m) = x ) ¢ Pil) A (1.94)
k=1

where we kept the notations for the functid@gandQ;, but added the argument
v. To get the average momentum transferred in a single sicgftect, one needs
to divide these expression by the total cross-se&i(x y, ). Thew component
of the transferred momentum for isotropic electrons is shimwFigure 1.5(a). As
shown by Nagirner & Poutanen (1994), the low-energy (Thamh$mit is given
by x(1 + 2p?/3). The angular dependent corrections arising due to thelalip
and quadrupole term in the electron distribution are shawkigures 1.5(b) and
1.5(c), respectively. While the component perpendicuas ts zero for isotropic
electrons, a substantial momentum component arises imtketeopic case. For
a large linear term of the electron distribution witty f = 1, the momentum
transferred in that direction is shown in Figure 1.6(a). i&inresults in the case
of the quadrupole term with,/ fo = 1 are shown in Figure 1.6(b). In the Thomson
limit, we get (see Appendix A.4)

2

2 2 f]_ 2 f2 4 2
1+ 3P —f—oﬂﬁ (4y +1)+f—0P2(n)1—5p ,  (1.95)

_ fi1 2\ 2f
QL S(Xy.m) = xy*BV1 -1 [—f—;§(1+%) + gf—inﬁ]- (1.96)
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Figure 1.6: (a) Momentum transferred in the direction pedeular tow (in units
of the momentum along for isotropic distribution) arising from the linear termin
the electron distribution (1.8) witlfy/ f = 1. Forn = £1, the momentum is zero
by symmetry. From the top to the bottom curves correspomgdto-0.5 (green),
0.5 (red), O (black). Solid, dotted and dashed curves qoorestop = 1, 10, 100,
respectively. (b) Momentum transferred in the directiorppedicular taw arising
from the quadrupole term in the electron distribution (M8 f,/fo = 1 for
the samep as in panel (a). The curves from bottom to top correspongl to
+0.25,0.5,0.75 (black, red, blue curves). The momentum is zerojfer—1,0, 1
because of the symmetry. The flat parts of the curves comelsjaothe Thomson
limit given by equation (1.96).
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1.4 Redistribution functions for anisotropic
electrons

We would like to reduce the expression for the redistribufionction (1.6) to a
form suitable for calculations. For the electron distribatof the form (1.8), this
function should depend on the energies of incoming andeseatiphotonsg; and

X, the corresponding (cosines of) polar angjeandn as well as the dierence in
azimuth¢ — ¢, (or cosine of the scattering anglie

1.4.1 Integration over electron directions

The three-dimensional integral ovprin equation (1.6) disappears due to tie
function. For further simplifications we can also use thaentdg

Syi+xa—y =X =y5(x-(p,+X) =% P,)- (1.97)
At this stage, we drop subscript 1 with the electron quasgiand get
3 d®
Roa =) = 7~ [ P60t F (1.98)
0 Y
where
I'=9y(X — X) - p(Xxw1 — Xw) - @ — Q. (1.99)

The angular integrals in equation (1.98) need the intradnadf a suitable
coordinate system. Often the polar axis is taken along tleetion of the scattered
photonw (see e.g. Nagirner & Poutanen 1993, 1994). However, thesaasnd
the most transparent way, is to choose the polar axis alonglitection of the
transferred momentum as was proposed by Aharonian & Atoy@81() (see also
Prasad et al. 1986)

n = (Xw; — Xw) /Q, (1.100)
where
Q? = (X1 — Xw)? = X2 + X2 — 2xxu = (X — %)% + 20, (1.101)
With this definition we get:
cosk=Nn-w=(qu—X)/Q, sink=x+y1-2/Q (1.102)
and
cosa = n-lz = (X — X)) /Q. (1.103)

Thus one of the integration variables becomesfcesQ - n and another is
azimuth®. The redistribution function (1.98) then can be written as

1 2n

R(x; — X)= % f pdy [dcosd | do fo(y, 7e) F 6(D), (1.104)
1 -1 0
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where now
I' =y(X; — X) — q— pQcose. (1.105)
Integrating first over cog using thes-function we get
R(x ex)—ifwdlfhdd)f( ) F (1.106)
! - 167 J,, "Q Jo e '
where we need to substitute
y(X1 = X) - q
cosf = ————— 1.107
50 ( )
to the expressions for, andF (see below). This yields
sing = , (1.108)
VI pQ
where L
+
b= VIVPPQ - [0 -9 - r=1—". (1.109)

The lower limit for the integral ovey comes from the requirement thabso| < 1:
1
¥z 7.0 p) = 5 (x=x+ QyL+2/q). (1.110)

1.4.2 Integration over the azimuth

In order to calculate the azimuthal integral in equatiod@6) we have to express
£ andé; (that enter the expression fB)) andr, in terms of the integration variable
®. We measure the azimudn from the projection otv onto the plane normal to
n, so that in this system

w = (Sink, 0, cOsk) (1.111)

and the unit vector along the electron momentum is
Q = (sinf cos®, sind sin®, cosh). (1.112)

Thus we can express the angle between the electron momentlily @ee Fig-
ure 1.1) throughb:

ne = Q- I3 = cosh cosa + sing sina cosfy — @), (1.113)
wherey is the azimuth of the vectdg in the n frame. We can also write
n = w-l3=C0Sk COSa + Sink Sina COSy, (1.114)

and use this expression to obtain gosSubstituting it to equation (1.113) we
thus express the electron polar angleén equation (1.8) through the integration
variable®.
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The kernelF depends on the four-productgndé;, which can be rewritten as

S1=X(y-p), &£=q+&, (1.115)

where
{ = Q- w=CosH cosk + Sing sink cosd. (1.116)

Equation (1.115) then can be transformed to

q

£ = %(d_ ~beose). £ = g5(d. - beoso), (1.117)

where we defined

d-
d,

Y(X+ X1) = X(X = Xa) ,
(X + %) + X1 (X — Xu) = d_ + Q?, (1.118)

which have the following property:
(?-07)/Q = (y-x?+r=2°
(2 -07)/Q = (y+x)+r=2. (1.119)

FunctionF in the azimuthal integral in equation (1.106) is an even fiomoof
®. Therefore the terms i, containing sinP give zero contribution. Neglecting
these terms we can express the azimuthal integral as

21 21
f neFd® = f noFdd, (1.120)
0 0
2 o
fnngcD = f n2Fdd, (1.121)
0 0
where
e = COSH COSa + SiNG Sina cosy cosd, (1.122)

2 = cosd cofa+sirfosintasirty
+ 2sinfsina cosfd cosa cosy cosd
+ sirf sifa cosy cos . (1.123)

Thus the expansion (1.8) (with andz,? substituted byje andn_g, respectively) is
a quadratic function of cab. Expressing

Q2§+§1 + d—+d+

2b ¢ 2b
Qésr QU rd)c+s B+
b2 g2 2h? q 2h?

cosd = (1.124)

cos @
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and using the identity = &; + q, we obtain an expansion d¢f that is symmetric
in & andé;:

o) = o+ 0 J:fl - CH%- (1.125)
The codficientscy, ¢z andcy can be represented in the form:
Co = fo+cCoafy+Coofy,
C = C11 f]_ + C12f2, (1126)

Cn = Cpfy,

where the cofficients in front of fo1, can easily be derived after lengthy but
straightforward calculation:

_ Zp-€e+e
T o)
_ __¢tta
T oy
3 2 2 2 2 1
Cop = m[(€—p) +(El+p) +/l(a_+a+)] - 5,
3
Ci2 T AR R [(e + €1)(20 — € + &) + A(d- + d,)],
3
Cp = m [(6 + 61)2 + /lQZ] . (1127)

Here we defined

Xy —nu), e =Xm—mu), p=ym+mn),
= 240+ i = 2upn - 1. (1.128)

&~ m
1l

The redistribution function (1.106) is then expressed as

3 (o)
R(X1, w1 = X, w) = 8 fd)’[CoRo + Ry + cnRy] (1.129)

¥ (X X1, 1)

where we have introduced three functions

1 T

Ro(X, X1, i1, y) = EL F do, (1.130)
1 T

Rz(X,Xl,ﬂ,’}/) = @L(§+§1)F d(I), (1131)
l T

Rio ) = o [ €aF do, (1.132)
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Alternatively, we can represent the redistribution fuoctas a sum of three terms
arising from the corresponding three terms in the electrstidution:

3 (o)
R(X]_, w1 — X, (L)) = é fd)/[fORO + flR]_ + szz] , (1133)
V(X X1, 1)
where
Ri(X, 7; X1, m; 15Y) = CoaRo + iRy, (1.134)

Ro(X, 15 X1, 1, 43 y) = Co2Ro + C12Rs + CoRyy
Using the Klein-Nishina cross-section (1.2) in the form

2 _ 20—
F:2+—q 29 2(1—})+12+£,
q é:l f é: fl
(and remembering that = &, + ), we see that the integrals (1.130)—(1.132)
involve integrals of types

f i £°do, f i & do, (1.136)
0 0

wheres = -2, ..., 2. The integrals over non-negative powerg ahdé; are trivial.
For the negative powers, using equations (1.117) and (1vt4 get (see Nagirner
& Poutanen 1993, for details):

[ w91 (o _sod
0

(1.135)

- , — = 1.137
&1 qa 0 fi o? a3 ( )
and similar equations faf which we get by substituting, a, andd, for &;, a_

andd_, respectively.
After some straightforward algebra we get the expressionRy, Ry andRy:

2 q2—2q—2( 1 1) 1 (d_ d+)
=+ ===+ =], 1.138

o Q 9 a a/ o¢\a a ( )
which was obtained by Aharonian & Atoyan (1981) (see alsoifdag & Pouta-
nen 1993),

2 2\(1 1 1(d d,
R2:§(d_+d+)+(l—a)(z-i—a)-i-?(a—%—a—i) (1139)
2 b? 2\1 1/(1 1
RH:g(d_d++5)+(l—a)6+¥(z—a). (1140)

Equation (1.129) (or alternatively equations (1.133) dnii34)) together with our
computed redistribution functions (1.138)—(1.140) anel ¢beficients (1.126)—
(1.128) give the full analytical solution for the redisution function describing
scattering of arbitrary photons from the electron gas whiaisotropy can be de-
scribed by equation (1.8).



34

CHAPTER 1. THEORY OF COMPTON SCATTERING

1.4.3 Alternative redistribution functions

An alternative expression for the redistribution functi®fx; — x) can be ob-
tained if we compute the moments

l T
(x,x,,u,y):—f cos® F do
R ' 7Q Jo

q2_2q—2}($_$) b(l 1), w.141)

? b TelE T E

1 T
Ry (X, X1, 11, y) = Efo cog ® F dd

1 Q@ 2\ #-29-21(d?* d?
—+§(1‘a)+T@ a a

Q? (d d,\ 1(d d,

W(z * a) ’ q_(a_ " a_) (1.142)

The expressions fdR, andR; then take the form:

where

dll

d02

dho

Ry
Ro

d01R0 + d11R¢ , (1143)
do2Ry + d12R¢ + d22R¢¢ )

COsH cosa,

. . b
SIng sina coSy = ———— (e + €),
= e Y
1

3 . . .

> (oS cog a +sirf 6 sir a sirf y) - >
. 1

g’ (2d5, - d, + siP6 - coS' @) - > (1.144)

3cosd cosa sing sina cosy = 3 dy; dyiy,

gsinze sif @ cos &

g (2df, — df, — sir? 6 + coS'a).

1.4.4 Approximate redistribution functions

Approximate forms of equations (1.138)—(1.140) can beinbthby making cer-
tain simplifying assumptions about the scattering. Fongxa, in the Thomson
regime in the electron rest frame the Klein-Nishina kefh& just 1+ 3. Assum-
ing further isotropic scattering in that frame and substwF by 4/3, we now
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get for the integrals (1.130)—(1.132):

4

R~ 35 (1.145)
4

R =~ 3_Q3 (d_ + d+) , (1146)
4 b?

The expression foR, was derived by Arutyunyan & Nikogosyan (1980). For the
alternative functions (1.141), (1.142), we then have

Ry = 0, Ry= 3% (1.148)

These then give
Ri =~ dyRy = cosocosa Ry, (1.149)
R, =~ (doz + %dzz) Ry = P,(cosh) P,(cosa) Ry, (1.150)

with cosf and cosr given by equations (1.107) and (1.103), respectively. The
approximate expressions are better than 50 % accurate Trhthrason regime for
X1y < 0.1 at all scattered photon energies.

1.4.5 Relation to the mean powers of photon energies

The relation between the redistribution function averamezt any electron distri-
bution and the mean powers of photon energies follows dyré&cim their defini-
tions (1.6), (1.7) and (1.36):

— 1 .
X So(x.m) = - fx‘l”dxl fdzwl R(X = X1). (1.151)

This relation is valid for any electron distribution. Comipg equations (1.133)
and (1.49), we get a relation between the functions depgnaiinthe electron
energy:

3
Ajk(%,¥)Px(n) = W
Xm(Xy)
X f X hdxy | Re(xe, 723 %15 13 y) Py, (1.152)
X (x7)

wheren; = nu + /1 -n?+/1 - u2cos® andR, depends only on the scattering
angleu, but notn,n;. The integrals over the solid angle can be represented as
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the integrals ovedu andd®, where® € [0, 27] and the limits onu, um(Xs, X, ¥)
andu* (X, X,y), are given by equations (A.39)—(A.40) with the argumengsd
X, reversed. Using equations (1.87) and (1.84), we also get

3
AL (X )Pi(n) = fofdxlf(l — 1) Re dPwy, (1.153)
3

In order to check the accuracy of our derivations we comptredeft hand sides
of equations (1.152)—(1.154) to the right-hand sides, whwe integrals were per-
formed numerically and obtained consistent results.

1.5 Examples of redistribution functions

Now we demonstrate the properties of the derived redigtabuunctions. We
consider a volume filled by electrons with the angular disifion given by equa-
tion (1.8). The emissivity in a directio@ at energyx can be obtained from the
radiative transfer equation (1.5) and is given by the irabgver the redistribution
function
5 A% [
€(X) = O'TNeXL 3 d“wq 1(X1) R(Xg, w1 — X, w), (1.155)
1

wherel(x;) = 2me(mec?/h)*x3n(xy) is the specific intensity of the incident radia-
tion normalized to the photon density as

1 dx
Nph:@fdzw fl(x) - (1.156)

Let us consider mono-energetic (with enengyelectron distribution (1.10).
Consider also a monochromatic source of isotropic seedpbBait energy; with
total photon number density,,. According to equation (1.133) we can write the
emissivity at an observer directigrfor a given scattering angle as

qm) = = moNeN e L Ry + 1R, + PR (1.157)
e(X,n, u —32ﬂ_me oTNe phxlpy s 1 s 2> .

which is related to the scattering angle-averaged emigsisi(x) = % f €(x, n, w)du,
and where (fok = 1, 2)

— 1 (=
Rmxiin) = 5z [ 40RO i) (L158)
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Figure 1.7: Redistribution functions for anisotropic @feas at a given scattering
angle. The incident photon energys= 1072 and the electron momentum=
0.1. The upper panel shows the photon (number) emissivitgtiropic electrons.
The solid, dotted, dashed, dot-dashed and dot-dot-dasineelsccorrespond to the
cosine of scattering angle= -2/3,-1/3,0, 1/3, 2/3, respectively. The lower left
panels show the ratiB; /Ry, while the right panels sho®,/R, as a function of
the ratio of the scattered to the incident photon energibs.tfiree row of panels
corresponds to the flierent observer directions= 1, 0.5, 0.



38 CHAPTER 1. THEORY OF COMPTON SCATTERING

1.0f 3
0.5 :
0.0f -
-0.5 :
0.4} 1k .
0.2F 1 ]
0.0F 1r ]
—0.2F 1 ]
~0.4F , 1t .
0.2} ' 1t i
0.0 1t -
-0.2} 1t -
~0.4+ n=0 Ar -
0.1 1.0 0.1 1.0

XIX, XIX,

Figure 1.8: Same as Figure 1.7, but for= 1. Note, that here the axes are in
logarithmic units.
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Figure 1.9: Same as Figure 1.8, but fo& 10.
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Figure 1.10: Same as Figure 1.8, but o 100.
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andn, = nu+ /1 - n?2+/1 - u2cos®. These functions obviously possess symme-
try properties:

Ry(X, —17; X; 4;y) ~Ry(X, 75 X1 445 7). (1.159)
Ra(X, —1; X1 113 7) Ra(X, 17; X1; 115 %) (1.160)

We compute separately the emissivities resulting frometieems in the elec-
tron distribution, i.e. functionRo, Ry, R, (see equation (1.157)), and show in Fig-
ures 1.7-1.10 the functioRy, multiplied by x (i.e. quantity proportional to the
photon number emissivity) for better visibility as well dtratiosR;/R, and
R,/Ry. The main behavior of the functions can easily be understsotdy formu-
lae (1.149)—(1.150) derived in the Thomson limit and ispit@cattering approxi-
mation. Averaging them over the azimuth and using rela@ign:) = Pk(17)Px(w),
we get

B _
Do BETX o, (1.161)
Ro

R X2Po(1) — 2XXqut + X2

é ~ L o2 P,(n) P,(cosb) . (1.162)

These approximate expressions become extremely accoratggh p (i.e. accu-
racy is about 1€ at p = 100).

For a small electron momentum= 0.1 and low photon energieg = 1072,
the exact redistribution functions are shown in Figure In#his regime, scatter-
ing is nearly coherent with the scattered photon energiesd®d by (see equa-
tion (A.35)) x*/x; ~ 1 + p+/2(1 - ). In this regime|x — x> < g < X, X, and
cost ~ (x,—X)/pQis a nearly linear function of/x;, becaus®/x; ~ /2(1 - pu).
For i not too close to 1, the azimuth averaging of aagives—n /(1 — x)/2 and
thusR;/Ry ~ (1 — X/x)n/(2p). Forn = 0, the function is always zero, because
of the symmetry. Similarly, the nearly quadratic depen@enfdR,/R, on energy
results from the ca® term, while aiu ~ 1/3 the function becomes more compli-
cated because of the cancellation in B3écosa) term.

In the opposite limit of the relativistic electrons (see tkigs 1.9 and 1.10),
the approximation (1.145) for the functid® works fine up tox;y < 0.1, while
as said above the rati® /R, andR,/R, are very close to those given by equa-
tions (1.161) and (1.162) for any photon and electron ersrght small scattered
photon energieg < X;, XRy o X/X;, and

Ri/Ro ~ nucost,  Rp/Ro ~ Pa(17)P2(u)P2(cost), (1.163)

with cosf ~ 1 — x/x;. At high scattered photon energies> X, the photons are
scattered at large angles in the electron rest frame aneftiierthey are beamed
in the direction of the incoming electrons. In that case ahgular distribution of
the scattered photons resemble that of the electrons. dndbimexR, « const,
andR;/Ry ~ n andR,/Ry ~ P,(n), which gives the flat dependences clearly seen
in Figures 1.9 and 1.10, argx) o fe(y, n) X/X;.
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1.6 Sunyaev—Zeldovich ffect

Let consider a cloud of isotropic Maxwellian electrons offeerature® = kT./meC?,
which moves with velocitycs, (corresponding Lorentz factdry,) through the
isotropic cosmic microwave background of tempera®gg, = KTemp/MeC2. We
compute the thermal and kinematic Sunyaev—ZeldoMices (Zeldovich & Sun-
yaev 1969; Sunyaev & Zeldovich 1972), i.e. the spectrum efdtattered radi-
ation (and resulting deviations from the black body) as aftion of ® and the
angle between the line of sight and the direction of motion.

One approach would be to make a Lorentz transformation ointident ra-
diation to the comoving frame, compute the Compton scattemdiation using
the kernel corresponding to isotropic electron distritmatiand then to Lorentz
transform it back to the observer frame. Another way is to jgota the electron
distribution in the observer frame, approximate it by exgan (1.8) and compute
directly the Compton scattered radiation in the obsenamné&. The second ap-
proach might be favorable from numerical point of view if thi@ect velocity is
variable in space arior time, as allows to pre-compute redistribution functiahs
a fixed grid of angles and photon energies.

1.6.1 Scattering in the comoving frame

Let us first compute the scattered radiation by a standardadeionsidering scat-
tering in the comoving frame. The relativistic Maxwelliaistibution of electrons
in the comoving frame (quantities with primes) is given by

’ exp(‘?” /®)

fo(P) = Nem, (1.164)

whereKj; is the modified Bessel function aridf, is the electron density in that
frame. The incident black body radiation occupation nunider

Npb(X) = (1.165)

expi) — 1’

wherex; = X/®cmp = hv/KT¢mp. From the radiative transfer equation (1.5), in the
limit of small optical depth, we get the correction to thedikdody spectrum:

An(x,m) = n(X,17) = Npp(X) = =T7S(X)Npp(X) + S(X, 7). (1.166)
wherert is the Lorentz invariant optical depth for Thomson scatigri
1 ™ ;
S(x,.n) = T f X, dx] f d?wy R(x) — X )Npp(X41) (1.167)
0

is the source function, and we used here the fact that th@ploaicupation num-
ber is Lorentz invariant. The energy transformation is giby Doppler shift
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X = XD andx; = X; D1 with the Doppler factors

1
D=———— Dy =Tp(1+Bu7). 1.168
Ty D=L (1.168)
The relation between the angles is given by the aberrationdia:
’ n _ﬁb
= , 1.169
T T B ( )

We note here thad, is equal to unity with high accuracy, because scattering is i
deep Thomson regime. The calculation of the redistributiostion RS° involves
numerical integration over the Maxwellian distributioe¢sequation (1.133); note
thatf, = f, = 0) fo = f{(y) = {(p)/N; given by equation (1.164). Thus the source
function (1.167) involves 4-dimensional integral to besiakiumerically, which is
rather time-consuming.

1.6.2 Scattering in the external frame

We can also compute the santéeet directly in the external frame. The electron
Lorentz factor in the comoving frame is related to the etatfour-momentum in
the external frame as

Y =Tu(y — PBome), (1.170)
wherer, is the cosine of the angle between the electron momentunherdirec-
tion of cloud motion. Because the distribution function @réntz invariant, we
easily get the electron distribution in the external frame:

WP = 14(P) = N: g 22
Ny _EXPEY/0)
¢ 4r O K,(1/0)

whereg; = B,/©® and we expanded the expression up to the second orgigr in
The electron density in that frame is:

expP 'y By 17e/0) (1.171)

2 2 A2
1+ %t(pz - 3y0) + Sipre + ﬁtTpPZ(ne) ,

Ne = f fo(p)d®p = TLNL. (1.172)

The corresponding terntg of the electron distribution can be obtained from equa-
tion (1.171) noting thatfe(y,n¢) = fe(P)/TbNZ. The change to the occupation
number is:

An(X, 77) = _TT§0(X’ n)nbb(x) + S(X’ 77) (1173)
The scattering cross-section is given by equation (1.2é)jmathe Thomson limit
it is justSo(x, ) ~ 1 — Bpn. The source function is now

S(x,m) :TT%( f X1 Npb(X1) dX1 f d?w; R(xy — X), (1.174)
0
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where the redistribution functioR given by equation (1.133) is averaged over
directions of incident photons, but still depends on thdtsoad photon direc-
tion n. This form of the source function is more favorable compdoeequation
(2.167) from numerical point of view, as it can be tabulateddvance at a given
grid of photon energies and angles. Computed directlylitistiolves numerical
calculations of 4-dimensional integrals.

1.6.3 Isotropic scattering in the Thomson regime in the elec
tron rest frame

In the Thomson limit (as in the case of the Sunyaev-Zeldoeftéct), the cal-

culations in the external frame can be dramatically simgaifi We can use the
azimuthally averaged approximate expression (1.145)6@0, and (1.162) for
the redistribution functions:

(o)

1
f 2w Ry — X) = 21 f du g f dy [foRo + fiRy + TR, (1.175)
- Vo (X X1,
Interestingly,R, does not depend opand in expressions fd®, andR; it comes
only through co® ~ (x; — X)y/Qp (becaus@ < X, X1, see equation (1.107)). For

the electron distribution given by equation (1.171), theegnals overy thus can
be taken analytically:

1 By 1 Ve o (V)
fd)/foR() Cr—b[l—g(@'i‘l'i‘g—(@) )],

X —X X —X "
fdyflRl = CByn 1“Q 1Q (1+ 76) (1.176)
2 X2P, (1) — 2XXqpt + X2
fd)’szz = Cgbpz(ﬂ) L2 @ -

X

Xp — X . +\2 1

e 3]) )
where the proportionality céicientC = Ry exply./0)/ [47rK;(1/®)]. The
zeroth order term iB, was derived by Poutanen (1994), see also Poutanen &
Svensson (1996).

Evaluation of the source function (1.174) now involves dmlg numerical in-
tegrations over the photon enengiyand cosine of the scattering anglereducing
the computational time by 2-3 orders of magnitude.

For all three methods we numerically compute the corredtioction for the
black body intensity

Al(X) = %fon(x, 1), (1.177)

and compare the results of calculations in Figure 1.11. hiteetdiferent methods
give nearly identical results.
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Figure 1.11: Deviation from the black body spectrum of casmmicrowave
background radiation witfi ., = 2.7 K resulting from the Compton scattering
in a moving cloud of isotropic hot electrons (thermal andekiratic Sunyaev-
Zeldovich dfects). The electron temperatureds= 0.03 and the cloud velocity
Bp = 0.01. The solid curves are computed using equations (1.168)%7), con-
sidering scattering in the cloud frame, where electronssarteopic. The dashed
curves show the results using the formalism developed sctipter for anisotro-
pic electrons, given by equations (1.173)—(1.174). Théedaturves correspond
to the semi-analytical approximation of the angle-avedaggslistribution func-
tion given by equations (1.175)—(1.176). The threffedent methods give nearly
identical results. The three curves from bottom to the tapespond to the three
viewing angles withy = —0.98,0, +0.98. The dash-dotted curves show the ana-
lytical approximation of Sazonov & Sunyaev (1998), whichludes terms up to
second order iB, and®, as well as a cross-term®. It works reasonably well
up to the temperaturéd < 0.02, but fails at higher temperatures in Wien tail.
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1.7 Conclusions

We have developed the exact analytical theory of Comptoesoay by anisotro-
pic distribution of electrons that can be represented byarskorder polynomial
over cosine of some angle (dipole and quadrupole anisesdpiFor the total
cross-section, we reduce the 9-dimensional integral toglesintegral over the
electron energy. Analogous expressions have been deovéae mean energy of
the scattered photons and its dispersion. We also obtaimedygteal expressions
for the radiation pressure force acting on the electron §asse moments can be
used for analytical estimations as well as for the numesghiltions of the kinetic
equations in the Fokker-Planck approximation (see e.gnm\&Poutanen 2009).

Furthermore, the expression for the redistribution fuorctlescribing angle-
dependent Compton scattering by anisotropic electroredigoed to a single in-
tegral over the electron energy. Exact analytical formwialed for any photon
and electron energy are derived in the case of monoenegjetittons. We have
also derived approximate expressions for the redistobutunction, assuming
isotropic scattering in the electron rest frame, which @/ \accurate in the case
of relativistic electrons interacting with soft photongl® Thomson regime.

We applied the developed formalism to the accurate calonsbf the thermal
and kinematic Sunyaev-Zeldoviclfects for arbitrary electron distributions. A
very similar problem arises in outflowing coronae aroundetaotg black holes
and neutron stars, where the bulk motion causes electraotampy. Another
application could be a computation of the radiative tramspothe synchrotron
self-Compton sources with ordered magnetic field, wherelderon distribution
can have strong deviations from the isotropy because off gitgle-dependent
cooling. These problems will be considered in future putlans.



Chapter 2

Photon—photon palir production and
pair annihilation

2.1 Introduction

A large number of astrophysical sources such as jets froiveagalactic nuclei,
gamma-ray bursts, pulsars as well as some X-ray binariesagale of produc-
ing high-energy gamma-ray emission. Radiative modelinguch sources has to
include the treatment of an additional physical processelevant at lower en-
ergies: photon—photon pair production, by which two phetoan annihilate to
produce an electron—positron pair. The process can take fglax; > 1, where

x and x, are the photon energies in.c?> units, meaning that at least one of the
interacting photons must hawe> 1.

Pair production can have a profounileet on the shape of high-energy spec-
tra. First, absorption of energetic photons on lower-eneagliation can atten-
uate the radiative power abovec?®. Secondly, the produced electron—positron
pairs can further modify the spectrum through inverse-Comcattering and
synchrotron emission. Also, if the inverse-Compton emisgroduced by the
secondary pairs extends abavec?, the scattered photons can produce another
generation of electron—positron pairs, which can upscéit¢her photons etc.,
leading to a so-called pair-cascade (see e.g. Bonomettoe® R871; Zdziarski
& Lightman 1985; Svensson 1987). Furthermore, in high cartyess sources
such as gamma-ray bursts the secondary pairs can domieal@dmson opacity
of the source over the electrons associated with protons. thterefore obvious
that the pair production process can influence the spectuemaowide range of
photon energies not limited to high-energy gamma-rays.

To accurately model theffects of pair production and annihilation processes
on both the electron and photon distributions without latigns on energies, we
need to know the exact cross-sections for both processeslbasxthe spectra of
injected pairgphotons. The exact pair annihilation cross-section wasdesved
already by Dirac (1930). A fully general analytic expressior the injected pho-

a7
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ton spectrum from annihilating pairs was derived by Svemg4682), a similar

expression for the injected pair spectrum due to photontgohannihilation was
found in Boettcher & Schlickeiser (1997). Although cortebeir expressions suf-
fer from cancellations in some regions of parameter spacthis chapter we will

instead follow the framework laid out in Nagirner & Loskut(999) to derive

all the relevant quantities, and will obtain expressiors tire free of cancella-
tions. The treatment is widely analogous to the treatme@arhpton scattering
in Chapter 1.

2.2 Relativistic kinetic equations

The relativistic kinetic equation for electrons accougtfor photon—photon pair
production and pair annihilation processes takes the fagno(ing induced terms
as well as electrgpositron degeneracy)

r2 2 f d3p, A%, d®x

E_'Yn—(p—)zz/l_% 5. X_176(E_+E+_§1_Z)Fw

X [ Aon(xa) () = ()L (p.)] (2.1)

Here we have used similar definitions used for the treatmk@oonpton scat-
tering: dimensionless photon four-momentuns {x, x} = x{1, w}, wherex =
hv/mec?, dimensionless electrgpositron four—momenturg ={y, p} = {y, pQ} =

v{1,8Q}, wherep = /y2-1 andB = p/y, the four-gradien¥V = {d/cot, V}
and the occupation numbens andri,, for pairs and photons, respectively. The
invariant reaction raté,, is (Berestetskii et al. 1982)

& &t 1) (1 1y
”_§1+§+2(§+f) (§+§1)’ (22)

where we have defined the four-products between the pa'titlementa as

=

§=p X=p "X, &H=p X%=p X (2.3)

- —+
Later we will also need the invariant four-product of the fgmomomenta defined
as
g=X-X =XX(l-w-w1) =xx(1-p) =&+ &, (2.4)
where the last equality arises from conservation laws ferggnand momentum.
The kinetic equation can also be written in the form of a tf@nsquation

19 i _ 3 S
S Q- VA(P) = —or N, Sup) L(p) + or NG, S Jnelp). (25)



2.3. PAIR PRODUCTION AND ANNIHILATION RATES 49

where the pair annihilation cross-section (in uniterej is given by

3 2 1 d®p, d3x1 d3
321 /13 N, y- Y+ X

Sa(P-) = A.(p,) Fyyd(p +p, —x-X (2.6)

and the pair production rate by

3 ( 2 V1 [dp, dBx d®
Jpp(P2) = 327T(/l‘°’Nph) zf " X X Apn(X) Apn(X1) F,, (P tP —X - X).
(2.7)

Although no longer manifestly covariant, equation (2.5ti relativistically cor-
rect and can be written in any frame.
The kinetic equation for photons can be written as

re 22 fd"‘x 1 dp_ d3p,

2 /13 X1 Y- v+
X [A-(P)AL(P.) = Fan(Xa)Tipn()] - (2.8)

Note that the extra factor/2 on the right-hand side of equation (2.1) compared

to equation (2.8) arises due to double counting of the phstates. In the form
of the radiative transfer equation we have

X+ Viipn(X) =

5(E_+E+_l(1_)_()|:w

1 2
(E— fo- v) n(0) =~ Non S0 (00 + 77 N N, 22 o), (29)

where the pair production cross-section is

3 2 1fd3x 1 d3p_ d3p+~
167T/13Nphx X1 v- Y+

Spp(X) = Apn(X1) Fyy 6(p_+ P, =%, —X) (2.10)

and the emissivity due to pair annihilation

3 (2V 1 1 [dx d°p_ op,
Jpa(X) = 1671(/13) N_N+)—(f %~ . A_(p )R (p,)F,,0(p_+p —X—X).
(2.11)

2.3 Pair production and annihilation rates

We will now turn to the calculation of the injection rates difs and photons
given by equations (2.7) and (2.11) respectively. In whlb¥es we will assume
isotropic particle and photon distributions.

The isotropic pair injection rate (2.7) can be written in tbem

2 )2 1
/l:éNph Y-Pp-

ine(p-) = 3n( [ A8 [ P s Ry 03000, (2:12)
XL Xj
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where we have defined

1 L d®p,
2 (4r )2 Y+
Similarly, the photon emissivity due to pair annihilati@n i

R, (y_, % %) = d’w d?w, Fy, 6(p + P, —%-X. (2.13)

2\ 1 1 [ © .
jpa(X) = 67 (/13) N_N+P ye A, (ps)dy, ﬁ(L) n—(p—)dy—Ryy(X’7—77+)? (2.14)
where
d3x
R (07-7) = 5P [ Q. FQUF,d(p +p ~x-X). (215)

Before proceeding, let's compare the quantisandR’, defined by equations
(2.13) and (2.15). Both of them contain integrals over thedions of three
particles’ momenta and an integral over one particle’sggnebue to rotational
symmetry, there are no angles left in the problem after natgans over three solid
angles, and the result does not depend on our choice of theesegarticles, over
the directions of which we are integratihgAfter the angular integrals we are left
with integrals of type

fd)/+(5()/+ +y. =% —X)-.. and fdx16(7+ +y. =% —X) ..., (2.16)
which are equivalent. We can therefore see RjatandRy, are related simply as

R;y(x’ Y- ’}’+) = Ryy(y—’ X y-+7vy+— X)- (217)

The problem of findingjyy(p-) and jpa(X) thus reduces to the calculation of a
single functionR,, (y_, X, X1).

The calculation oR,, will proceed in two steps. Following Nagirner & Losku-
tov (1999), we will first calculate the quanity

_ 1 d3p,
Py = 5op- [ SRR FLo(p +p -x -9 (219

which has the physical meaning of angle-averaged pair jgtamurate from pho-
tons ‘colliding’ with a given angle of incidence. Onég,, is known, we can
calculateR,, from

1 Mt
Ry (y-, X, X1) = éxxl f F oy (v-s X Xq, 1) d. (2.19)

Hm

The integration limits fop will be given below.

To see that this is true we can formally add an integratiom theedirections of the remaining
particle, which amounts to multiplication byr4We can then change the order of integration and
remove an integral over the directions of another partigkgch is equivalent to division by74
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2.3.1 Integration over electron directions

After using the three-dimensional delta-function to tdieintegral oved3p, , we
can cast equation (2.18) in the form

— 1
o xxas) = 5op- [ a0y ole + 6~ 0) (2.20)

where we have used the identity

o+ +y-—X—X) =y, 0(+&1-0). (2.21)
Writing the quantitieg andé; as
E=Xy-pR-w), & =Xy-pQ- w), (2.22)

the argument of the delta-function becomes (hereaftergingpthe -’ for elec-
tron quantities)

E+&-g=y-(X+X1) - P (Xw + X1w1) — XX1(1 — p). (2.23)

In analogy with the treatment of Compton scattering, it isiest to perform the
angular integration in a coordinate system where the paiarigin the direction
of Xw + X,w1. The corresponding unit vector is defined as

Xw + Xqw1

n= =g (2.24)
where
Q% = X+ X2+ 2xXqu = (X + X1)? — 20, (2.25)
In this system
d’Q =dpdcoss, where co®=Q-n. (2.26)

Using this in equation (2.20), we can immediately take thegral over the polar
angled, giving

— 1
Foy (v, X, X1, p) = o> pqub fd cost F,, s[y(X+ x1) — pQcost —q]

1
b= f dg Fy,. (2.27)

The invariant reaction raté,, depends on the polar anglethroughé and é&;,
which we have to substitute from

Y(X+ %) —q

cosh =
pQ

(2.28)
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To integrate equation (2.27) over the azimuth, we need toifsple reference
direction from whichg is measured, which we choose to be the projection of the
photon directionw to the plane perpendicular to Defining

X + Xy . Xy V1 — u?
COSk=w-N= , Sink = ———, (2.29)
Q Q
we then have
w = (Sink, 0, cosk), Q = (sind cosy, sindsing, cosb). (2.30)

The dependence &, (¢, £1) on the azimuthal angle comes in through the scalar
product

w - = COSk COSH + Sink SiNf COSy, (2.31)
which enterg andé; linearly through

§=Xy-pw-Q) and & =0q-¢&. (2.32)
Therefore we can writé andé; in the form

£= (%(d+ _bcosg), &= % (d_+bcose), (2.33)

where, using equations (2.28), (2.29) and (2.31), we have

d, = y(X¢ — X) + X(X + X,

do = y(X— X1) + X (Xa + xu) = Q° — d, (2.34)
and
b= \/F\/pZQ2 —[y(x+x)-qf°, r= % (2.35)

Writing the rateF,, in the form

P +20-2 (1 1) 1 1
F. = e = - = _ 2, 2.36
7 q £ &) &£ & ( )

we can see from equations (2.27), (2.33) and (2.36) that wee t® calculate
integrals of the following types:

2nd.
(-~ B

fz” do _2n fz” do
o d.Fbcost @Z_p2 Jo (d:Fbcosdy

(2.37)
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The pair production ratgw thus becomes (Nagirner & Loskutov 1999)

where we have defined
a? = dicgzbz (- X2,
a’ = % =1+ (y—x)> (2.39)

2.3.2 Integration over photon directions

To calculate the angular integral in equation (2.19), itiswenient to first change
the integration variable from to g, making use of the relatiog = xx;(1 — w).
This gives
1 raV_
R, (y-, X, xq) = éfu F,,(y-, X, X1, 1) dq. (2.40)

q

Now all quantities appearing ﬁw have to be expressed in termsgpfather than
u. Looking at equation (2.38), we see that we need

s 2XX%

d. =s: —q, a; = J (1 +w.Q), (2.41)
where
S, = X(X+ X1) + y(X1 — X), S = X (X+ X1) + y(X = X1) (2.42)
and
_(r=x2-1 _r=-x)-1
W, = o W_ = 0 ) (2.43)

The integrand in equation (2.40) now takes the form

E 1 ¢+29-2 1 1
Fo,(y_, X, Xg, 1) = N
77(7 1 /’t) 2XX1 q3/2 ( \/1 n W+q \/1 " W_q]
1 S+ —Qq s —( 2
(2xx1)¥2 G | (L +w,q)%2 (1 + W_q)3/2] Q’ (2.44)
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whereQ? = (X + x1)? — 2q. The required integrals are

d 3/2
e = i 1A~ A
dg B
| G A0,
_ G __2
| srimmwh
Vadg_ 2 1
T+ w2 = h [A"(h) - m]
dq _ 241
VA +wa)¥2 — Ah)’
dg _ _
5= Q (2.45)

whereh = wg and

_[In(vh+ v1+h)/vh ifh>0,
Ao(h) = {arcsin(\/—_h)/ v-h  ifh<0, (2.46)
Ah) = VI+h (2.47)

After a little rearrangement, the angle-averaged pair petdn rate (2.40) finally
becomes

()

1 q
Ry, (7, X X1) = 1 [\/(x +X0)? — 29+ T (y, X, X, ) + T_(y, X, Xq, q)] w° (2.48)
where the primitive functions are (Nagirner & Loskutov 1999
_ q3/2 A(hi) - AO(hi) 2 A(hi)
To(y, X %1, Q) = AEE (Xx1 — 1) ™ *\q N
V4 [s.—q
— -4 h,)|, 24
@0y | Ay PR (249

while s, andh, = gqw, are determined by equations (2.42) and (2.43), respec-
tively. The integration limitg" andg™ in equations (2.40) and (2.48) are given
in Section 2.6 below. Expressions similar to (2.48) andqphave been derived

by Svensson (1982) and Boettcher & Schlickeiser (1997). édew their formu-

lae sufer from cancellations wheh approaches zero, while in equation (2.49)
cancellation appears only in the terdy(h) — A(h)]/h, which can easily be com-
puted via Taylor series for smdil
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2.4 Total pair production cross-section

Let's write the pair production cross-section given by egume(2.10) in the fol-
lowing form

2 1 d3X1
S = - N 2.50
500 = s | S k) (@ (250)

where

So(q) = 1674 vy Fyyo(p_+ P, =X~ X). (2.51)

To calculatesy(q), we first take the integral oveFp, by making use of the three-
dimensional delta-function, leaving us with

31 f d*p_ d3p,

31

d3p_
%0 = Targ | S Fr e+ 6= 252)

where we have used the identity (2.21). The subsequentraiteger d®p_ is
most easily taken in the centre-of-momentum (CM) frame efittieraction. In
this frame we have

Xem + X1cm = 0, q=xx(1—p) = 2% (2.53)

The delta-function in equation (2.52) thus becomes (dragppt’ from p)

6 m = XCm
e+ 61— =o(p- (x+ )~ x-x) = X (250)
giving
So(em) = — e f F, d?Qen (2.55)
641 X3, I

after taking the integral ovey.,,. Here we have defineg.,, = +/*%,—1 and
have made use of the Lorentz invarianceddp/y. Hereafter we writes; as a
function of x., instead ofq, the two designations are equivalent owing to the
relationq = 2%,

In the CM-frame the invariant four-producisandé; enteringF,, become

&= Xcm(ch = Pem gcm),
&1 = Xem(Yem — Pem évl,cm) = Xem(Yem + Pem dem) (2.56)

where we have introduced cosines of the angles betweendbiai and photon
momenta in the CM-frame as

Lem = Qcm * Wem {1em = —dem = Qcm - W1cm. (2-57)
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Writing the diferential solid angle in (2.55) @8Qcy, = d/cmdpem, We can see that
the azimuthal integral can be taken trivially since thegnéed has no dependence
on¢.m. Making use of relations (2.56), the remaining integral barmwritten as

) )
31 31
= —=— F, dé=—— F,, d 2.58
where the integration limits are given by

‘f(L) = Xcm(xcm - pcm), f(u) = Xcm(xcm + pcm)- (2-59)

Inserting the invariant cross-section (2.36) into (2.58) ategrating, we get

_3Pem| 1 i_l l+ﬁcm_i_
%(Xcm)‘exzzm[ﬁcm(“xzm szm)'”(l—ﬁcm) . 1]’ (2.60)

whereBem = Pem/Yem = Pem/Xem- The quantitysy has the physical meaning of the
centre-of-momentum frame cross-section for pair produacti

For isotropic target photon distribution we can write thess-section (2.50)
in the following form

3Pem| 1

_ 2 ~
Sop(X) = 47r/13 N f X§ dXq 0 pp(X, X1) Fiph(X1) (2.61)

c'Vph

where
11
Tpp(X X1) = 27 %00 f dudg X So(¥em) (2.62)

and we have used the relatign= 2x2,,. Sincex.m does not depend og, the
azimuthal integral is again trivial. To take the last ingdgt is natural to change
the integration variable from to x.m,, using the second relation in (2.53),

AXemdXem
__ cm 2.63
du o (2.63)
so that
N
Tpp(X, X1) = W . Xgm dXem So(Xem)- (2.64)

The lower integration limit in equation (2.64) reflects tleguirement that in the
CM-frame the energies of the pair producing photons neee tat keast equal to
the electrofpositron rest energy, whereas the upper limit is simply thgimum
attainable CM-frame energy of photons with energieandx; in the lab frame
(i.e. a head-on collision).
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Inserting the CM-frame cross-section (2.60) into equat®@4) and perform-
ing the integrals, we arrive at the final expression for thetph—photon pair pro-
duction cross-section (Gould & Schréder 1967; Zdziar9i&8):

31 (2V+2v+1 2v+ )W, )
opp(X X1) = = Ihnw—- ———-In"w+2In“(w+1
pol(% X4) 8x2x§{ v+l Wil (w+1)
. 1 2
caf 1) 2} 265
where
v=xx—-1 and w= M (2.66)
VW+1-— N
and L is the dilogarithm defined by
: "In(1-
Lio(r) = f n( - 9ds, (2.67)
0

2.5 Total pair annihilation cross-section

The derivation of the pair annihilation cross-sectiondel along the same lines
as the derivation of the pair production cross-section. drhoss-section (2.6) is
written as

_ 2 1 [dPp, .
= — | == R.(p, 1), 2.68
Spa(P-) BNy A.(p,) So(Ce) (e + 1) (2.68)
where
3 1 d3x d3x,
So(%ke) = D)) x % Fyyo(Pp_+p, —X-X (2.69)
and
Qe=P -P_= Yo¥-(1=Bp-Q: - Q) =y,y (1-Bifpe) =&+& - 1.

(2.70)

After using the delta-function to take the integral ougx; in equation (2.69), we
get

3 1 d3x
@) = 35 | % FroEra-e-D @7
where we have used the identity
O(ys +y- =X —X) = X 6( + &1 - Qe — 1). (2.72)

Passing into the CM-frame and using

Prem+ Peem=0,  Ge =¥y (1= Bifte) = ¥Yom+ Pom = 2Vim—1 (2.73)
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and
6 m™ XCITI
SE+é-G-1)=d(x-(p,+p)-p P -1)= % (2.74)
cm
the cross-section (2.71) becomes
3 1
Sren) = Ty | P P (2.75)

Here we have again writtesy as a function o, instead ofge, using the second
relation in (2.73).
In the CM-frame the invariant four-producsandé; enteringF,, are

&= E_ - X = Xem(Yem = Pem 4—,cm),
&= E+ X = Xcm(ch = Pem §+,cm) = Xcm(ch + Pem g—,cm), (2-76)
where
{_em= Q—,cm * Wem {rem = —dem = Q+,cm * Wem. (2-77)

The diferential solid angle in (2.75) can be writtend&m, = dZ_ cmdpem, allow-
ing the azimuthal integral to be taken trivially. Using tiedations (2.76), we can
write the remaining integral as

() (V)
3 l 3 1
F,dé= ——— f F., dé;, 2.78

where the integration limits are given by (2.59), with, = y.m. Upon integration
we get

3 1]|1 1 1 1+ Bem 1
Solren) = [ (1+__ )| ( ) —1], (2.79)
16y [Bam T Vam 2 \1=Bem) Vi

which can be regarded as the centre-of-momentum frame-sea$®n for pair
annihilation.

For isotropic target electrgpositron distribution the cross-section (2.68) can
be written as

gpa( p-) =4r

o 2dp+ Tpa(y+,Y-) N (Ps), (2.80)
where

g pa(7+, y-) = d¢ 7cm So(yem)- (2.81)
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The CM-frame energy.n, depends only on the relative anglebetween the anni-
hilating particles, making the azimuthal integral in (2.81vial. For the remain-
ing integral we use the second relation in (2.73) to changantiegration variable
from u to ym through

4)’cmd)’cm
dy = —————. 2.82
u 0.p. (2.82)
This gives
4 ém
Opa(Y+,Y-) = m f; m 7§m dyem So(yem)- (2.83)

The integration limits in equation (2.83) can be read fron782 by settingue =
-1 and 1, giving

'y::;m = \/(7+7— +1+p, p—) /2. (2.84)

All the integrals in (2.83) are elementary, the final resattthe total pair annihi-
lation cross-section is found to be (e.g. Svensson 1982)

¥ém
. (2.85)

Yem

3 1 3
opa(Y+,Y-) = 87y P B2 Veml(Bem) — 2Y2m + Z'—Z(,ch)]

where we have definddB) = In[(1 + 8)/(1 - B)].

2.6 Boundaries

The limits of integration in equations (2.19) and (2.40%aifirom the requirement
that|cosd| < 1 in equation (2.28), which constrains the allowed regiomhia
parameter space af X1, y_ andu. Expressing: from the inequality

< % <1, (2.86)

we get the conditiop, < u < u,, where

-1

po L <y <yOxx,-1),
pim = qp- YO X, =1) <y~ < ym, (2.87)
—1 i yO(x, X, 1) < y_ < y(X, Xq, —1)
and

0=
M+ = 1- X_)(l (288)

Here we have defined

0. =7y+y-+1+p.p, (2.89)
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wherey, = X+ X, —y_ andp, = /y2 — 1, as well as

1 1
YE (X, X, -1) = = (x+ X1+ X = Xq|4/1— —) Ym=X+X—1 (2.90)
2 XX1

The corresponding limits fag in equation (2.40) read

g, ifl <y_ <yO(x x, -1),
qV =10, if YO XX, -1) <y- < ym, (2.91)
2xxg if yO(x %0, —1) < y- < yO(X, xq, 1)

andgq® = q..

Demanding thati, < u,, i.e. that the integral in equation (2.19) exist, will
give us a constraint on the allowed region in energy spadeegbarticlegphotons.
In fact, sinceu, = max-1,u_} and we always have_ < u,, we only need
to require thafu, > —1. Given the energies of the annihilating photons, this
determines the allowed range of elecffmrsitron energies that can be produced.
We find

YOX X, —1) < y_ < yO(X, xq, —1)  if X+ X3 > 2%xq,

1<y <v¥m if X+ X; < 2XX. (2.92)

The integration limits in equations (2.12) and (2.14) areaoted by expressing
the necessary variables from conditions (2.92) in term&efrést. For equation
(2.12) we need constraints on tRex; plane in terms ofy_. After a lengthy but
straightforward derivation we find the lower limits of théoabed region to be

1 X/M{[2X—y-(1+B)ly-(L+B-)} if x> X,
=Sy (1= K = xHRx=y-(L-)ly-(1-B)) if x<x,

y-+1-X if xXo < X< X,
(2.93)

where we have defined 1
X =5 [1+vy_ (1+B)]. (2.94)

Because we always ha\xx%) > x| the latter sets a lower limit for the energy of
either photon for producing an electron (or positron) ofrgge_.

For equation (2.14) we need constraints on fhey_ plane in terms oix,
which yield the lower limits

YO if x<1/2,
o |y if1/2<x<1andy, <7s, L _ Jra Tx<1/2, (2.95)
T y® if x> 1 andy, < ys, T it x21/2, |

1 in all other cases
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where

1
(Fi + F_) F.=2X—y,.(1£B,),

H

and

A+l 2 -2x+1
AT T BT T x—1

61

(2.96)

(2.97)
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Chapter 3

Synchrotron radiation

3.1 Introduction

Along with Compton scattering, sychrotron radiation carrégarded as one of
the most important radiative processes in high-energppisyisics. One of the
reasons for this is that the emission from virtually all ssas capable of produc-
ing high-energy radiation originates from highly conduetplasma, in which it
is natural to expect a certain amount of magnetization. Atlse environments
in the vicinity of compact objects tend to be strongly magreest, the field can
be generated in the accretion flow by dynamo action or can beoaed to the
central object (neutron stars). In sources like blazargyamama-ray bursts where
outflows are produced, the plasma can carry the generatdddidrge distances
from the central object into regions where the flow energy gitsipated (e.g.
through shocks), with profoundfects on the produced emission.

The theory of synchrotron emission is well established (gviews, see e.g.
Ginzburg & Syrovatskii 1965, 1969; Pacholczyk 1970). Thseibd&ormula for
the radiation spectrum from an electron moving with aripyttaorentz factor in a
(macroscopic) circular orbit was given already by Scho®0(), albeit in a dif-
ferent context. Thereafter nearly forgotten for 40 yeassjmportance became
apparent only in the late forties when emission from energétarged particles
in a magnetic field was discovered. In a weak magnetic fieldrevickassical
theory is applicable, Schott’'s formula is exact. Howeves,direct application
to relativistic particles is not feasible, since it invadveummation over a large
number of closely packed harmonics. In the ultrarelatiwighit the synchrotron
emissivity of electrons moving with a given pitch angle idhvi@own (Westfold
1959; Le Roux 1961; see also Scheuer 1968; Ginzburg et aB)18& expres-
sion for randomly oriented magnetic fields was derived bystisi& Schlickeiser
(1986) (see also Ghisellini & Svensson 1991). The trarativéstic regime is least
straightforward. One possible approach is to calculatditsiecouple of (tens of)
harmonics separately and substitute the summation overdmacs by integration
for the rest.

63
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In this chapter we will derive the kinetic equations thataliéz the evolution
of particle and photon distributions due to synchrotronssmoin and absorption.
The electron equation will then be written in the form of thekker-Planck equa-
tion to facilitate practical application. Finally, we wgive the formulae for single
electron emissivities in dierent limits, in terms of which we can express all the
codficients entering the kinetic equations.

3.2 Kinetic equations

Writing down the kinetic equations for particles and phatarteracting through
synchrotron processes is somewhat less straightforwardiththe case of pro-
cesses involving binary particle collisions like e.g. Cadarpscattering and pair-
production. The reason for this is that the interaction $gkace in and through
a field that in is ‘external’ and prescribed. This means thatdonservation laws
of the total four-momentum no longer hold as they do for byranllisions. More
specifically, the conservation of three-momentum breaksxwhile the total en-
ergy is still conserved. Furthermore, since we are conisiger tangled magnetic
field with no electric field, we are bound to a particular fraoheeference. There-
fore the kinetic equations cannot be written in a manifestlyariant form valid
in any frame as they were for Compton scattering and paugrtion.

To deduce the form of the kinetic equations for synchrotroocesses, it is
simplest to consider generic discrete energy levels ofreles in a magnetic field
and study the transitions between these levels due to sytnehremission and
absorption (see e.g Twiss 1958; McCray 1969; Ghisellini &$&son 1991). We
will look at these transitions from the point of view of elewts and photons in
turn.

3.2.1 Electron equation

Let’s consider an isotropic distribution of electrons ahd{ons in a volumaV in
a tangled magnetic field. In such case we can label the efegtrantum states by
their energyE; = mec?y; (which we regard as doubly degenerate due to spin, ne-
glecting spin-field interaction). The occupation numberstectrons and photons
are defined as; "andri,, respectively. The transition probabilitiestes between
statesi and j are described by Einstein déieient A;;. Note that since we are
going to write all the rates in terms of occupation numbére, Einstein cofi-
cients describing spontaneous and stimulated emissiorelhsasvabsorption all
coincide.

Let's consider an electron statend write down the rates for all transitions
from and to this level. The rate of spontaneous downwarditians from level
i, resulting in the emission of a photon with energy in thervae(x, x + dx), can
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be written as
dN-

dtdx B Z B Aij o (yi = ;=% (3.1)

spem  Ej<E

wherex = hv/mec?, N denotes the number of transitions and the delta-function
plays the role of the line ‘profilep;; and enforces energy conservation. The sumis
to be taken over all statgghat haveE; < E;. The total transition rate is obtained
simply by integrating ovex, giving

dN-

| =2 hiA (3:2)

spem Ej<E;

Similarly, the transition rate from leveldue to stimulated emission is
dN”

dtax|. 2 Fon0) i Aoy =7 = %), (3.3)

stem  Ej<E

whereas the rate of transitions to upper levels resultiogn fabsorption of a pho-
ton from energy rangex(x + dx) is

dN;

didx|, 2, Fon() i A 60y =i = %). (3.4)

abs Ej>E

The total rates are again obtained by integrating equaf®83% and (3.4) ovex.
Analogously, let us write the rates for all the transitiagodeveli. Due to
spontaneous and stimulated emission from upper energhs eechave

dN;
dtdx

- Z [1 + Apn(X)] 1y A S(yj — vi = X)s (3.5)

em Ej>E

while the upward transitions from lower levels due to absorpgive
dN
dt dx

= > Ton(¥) i A 60 = 5 = X). (3.6)
abs Ej<E

Our aim is to write all the above rates in terms of a single siviiy Py(X, y;),
which we define as the number of photons emitted in unit volange unit time
into interval , x + dx) due to spontaneous emission, normalized to one electron:

dNpp
Pn(x7) = dt (;)x

= > A=y - ). (3.7)

spem Ej<E

Passing into the continuous limit of electron states using

2
Z — /I—SAVfd:%pj, (3.8)
i c
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wherep; = ,/y§ -1, we get

2 2
Pa(X, %) = ﬂ—gAVfdgpj Ajdlyi—vi—X) = /1_34”7’jpj Aij AV, Yi=Yi—X
C C

(3.9
We will also need an expression for sums over ‘upper’ enexggls, i.e.
2 3
Z Ajolyj—vi—-x - ek d”pj Aijo(yj =i — %)
Ej>E C
2
"z 4ryipi AjAY,  where yj =y +X, (3.10)

which together with equation (3.9) gives

+
|

Yp,
YiPi

Z Ajolyj—vi—X) = Pa(X, %), where vy =y +Xx (3.11)

Ej>E;

Using equations (3.7) and (3.11), the transition rates)(8313), (3.4), (3.5)
and (3.6) from and to leveltake the form

dN-

drdx . = [1 + Apn(X)] Ne(yi) Pa(X, ¥i), (3.12)
dN- + o
SN 2 A Felni) 22 Pk ), (3.13)
dtdx abs YiPi
dN:* +nt

|2 L+ Aon00] Pelr) ZP Pk ), (3.14)
dtdx|, b
dNi+ . L
= M09 0) Pa ), (3.15)

wherey; =y — xandrig(y;) = ii. The total rate of change of the electron occupa-
tion number on levalis obtained by subtracting equations (3.12) and (3.13) from
the sum of equations (3.14) and (3.15) and integrating dveephoton energy

dfe
d

tyﬂ - fo dx% Po(x, ) {felri") [1 + n(¥)] = () (X))
_ fo dx Po(x, 1) {Re() [1+ Fpn(X)] = elyi) An(¥} . (3.16)

Going to the continuous limit and dropping the indices frdec&on quantities,
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we can write this as
d N 0 © P(x,
Sono = [ ax [ dyayapn 2 6y -y -0
0 Y

x {Tie(y1) [1 + ipn(X)] = Fie(y) fipn(X)}
- [ o [ T sty -39

{fey) [1 + Fion(¥] — Fie(y2) fipn(¥)} . (3.17)

where we have formally reintroduced the energy-consematelta-function to-
gether with integration ovey;. We have also introduced the (energy) emissivity
P(x,v) = xPn(X,y), explicit expressions for which will be given below for bot
cyclotron and sychrotron regimes. Equation (3.17) reprtsge final form of the
kinetic equation for non-degenerate electrons in a magfietd, accounting for
spontaneous and stimulated cyclo-synchrotron emissiarellgs absorption.

3.2.2 Photon equation

The number of photons emitted into an energy interxak ¢ dx) in unit time due
to spontaneous as well as stimulated emission is

dN,
dtdx Z Z[“”ph(x)] Aoy -y — %), (3.18)

E Ej<E

the rate of photon absorption from the same interval is

dN;,
dtdx Z 2, For0) iy Ay (i = = %) (3.19)

E Ej<E

Recalling the definition oP,(X, ;), equation (3.7), we can write the rates (3.18)
and (3.19) as

dN,
dtdx Z[l + fpn(X)] Pe(i) Pa(X, %), (3.20)
and
dN-
o = 2700 ) P ), (3.21)

Thus the total change of the number of photons in interxat ¢ dx) is

ANy

dtdx—ﬂ—34ﬂAv [ v P ) (R 1+ 0] - ) ). (3:22)
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where we have used the relation (3.8) to pass to the contilirait and defined
v~ = vy — X. The diferential number of photons can be written in terms of the
occupation number as

2 o
dNph = A—% A X2AX AV Tigh(X). (3.23)
Using this on the left hand side of equation (3.22) and reducingd(y — y1 —
X) dy1, we obtain the final form of the photon kinetic equation:

d .. . 7 P(x,
S0l = [y [ dyiyp 22 50—
1 1

X {e(y) [1 + fpn(X)] = Fie(y2) Fon(¥)} - (3.24)

3.3 Fokker-Planck equation for electrons

In its present form the electron kinetic equation (3.17)asvery useful for astro-
physical calculations. The reason for this is that the magfield strengths are
typically much below the critical field streng®y, = mgc®/(er) = 4.41x 108 G
(although there are exceptions like e.g. magnetars). Tdreréhe typical energy
of a synchrotron photon is much lower than the energy of teetedn that emits or
absorbs it. Thus at each event the electron gains or loseyg fdction of its ini-
tial energy, making it natural to regard the exchange as ar@us process rather
than discrete. In such case the evolution of the energyildision is described by
a Fokker-Planck dierential equation. To deduce its form in this particularecas
let’'s look at equation (3.16) and rearrange it in the form

) .
FUP RO = [ o B Pk ) () (o) = )]
- [ @ Puc ) P9 Tr) P )

+ fo AX [y B Pa( v) Telr) — 71 Pal 1) fely)] . (3.25)

The next step is to expand quantities likgy?"), fi(y; ), v; B Pn(X ") and
¥i P Pa(X, %) fi(y;") to the second order in ‘paramete’= y;" —yi = vi — ;.
Inserting the expansions into equation (3.25) and coligdirms, we get

%[yp fie(y)] = fo " dxx % [y P Pa(% ) Re(¥)]

0 Ih“]e('}’)
Oy

© N 0
+ f dX X2 fipn(X) — [7p Pn(X, y)
0 dy

1 re 0 -
i3 f dx X 0 [ypPu(x.7) )] (3.26)
2 0 (9')/
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where we have kept only terms up to second ordet imtroducing the functions

HE) = fo P y) () R X Ho() = fo TPxy) Rdx, (3.27)

as well as the electron cooling rate

4o7Upy*
3 mc

e = - fo P(x.7) dx = - fo Puxy) xdx  (3.28)

we arrive at the Fokker-Planck typefidision equation for electrons (McCray
1969; Ghisellini et al. 1988):

%[VIO Ae(y)] = —% [)'/syp fie(y) — H(y) vp ‘9?;7(/7’)]
2
+ 22 [Ho) P - (3.29)

20y?

The term containings on the right-hand side of equation (3.29) is responsible for
electron cooling due to synchrotron emission, the termaiaimgH accounts for
heating as well as ffusion in energy space due to self-absorption. The latter ter
also enables us to treat electron thermalization in stsosgjf-absorbed regimes.

Note that the last term in equation (3.29) is missing in amdquations de-
rived previously (McCray 1969; Ghisellini et al. 1988). kbreesponds to the
diffusion due to spontaneous emission, but does not contributeet electron
coolingheating. However, in most cases we expect its contributidretnegligi-
ble compared to the other terms. It is of the ordgy smaller than the cooling
term with|ys| and, when electrons are mildly-relativistic, self-absmmpbecomes
important,rip, > 1 and the term containing dominates. Therefore the term with
Ho can be neglected in most applications.

In the context of thermalization it is worth mentioning thatlaxwellian elec-
tron distributionrig)y together with a Rayleigh-Jeans radiation field is a steady-
state solution of equation (3.29) (neglecting the last jeffo see this we simply
observe thatighri(X) = O/, where® = KT/mec?, as well adifiem /0y = —fiem/O.
ThusH(y) = —@ys and the expression in the first square brackets in equation
(3.29) vanishes.

3.4 Cyclo-synchrotron emissivities

As we have seen, in order to calculate all the necessaryiraths electron and
photon equations, it is licient to determine a single quantity: the emissivity
P(x,y). The cyclo-synchrotron emissivity (here in unit$ strt) at photon energy
x in the direction given by angleto the magnetic field for an electron moving at
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a pitch-anglex with velocity8 = p/vy is (Pacholczyk 1970)

(o0

C
X, 0,q) = —as X
1066, ) = T-ar >

(0059 — Bcosa
=1

sing

)2 3(2) + B sirta J(Z(z)]

X 6(I$ - X[1 - B cosa cos@]), (3.30)

wherea; = €/ch is the fine-structure constarit,= B/B, is magnetic field in
units of the critical field,J, andJ/ are the Bessel function and its derivative, and
their argumenk = xpsina sind /b. Averaging over pitch-angle and integrating
overd, we get the angle-averaged cyclo-synchrotron spectrum

1 1
P(x,y) = %fldco&v Zyrfldcose n(x, 0, a). (3.31)

Direct summation over harmonics works fine for mildly relatic electrons
v < 3. Inthis case, we first use tdgunction to integrate over the energy bin, and
then integrate numerically over the angles (see e.g. Matk&®&Malzac 2003)
and sum over harmonics contributing to a given bin. The sammeeplure is used
for any largery at photon energies corresponding to the first 30 harmonics (i.e.
x < 30b/y). At higherx, we use two dierent methods. In the ultra-relativistic
regimey > 10 we use the angle-averaged relativistic synchrotrontspaqCru-
sius & Schlickeiser 1986; Ghisellini et al. 1988):

3\/§O'TUB 1

P(x7) = == BYZ{KMS(V)KUS(X) - X[k - Kf/s(i)]}, (3:32)

whereX = x/(3y?b) andK, is the modified Bessel function. For3 y < 10,
we substitute the sum over harmonics in equation (3.30) byiritegral ovet
and use thé-function to take it. The angular integrals are then takemenically.
Alternatively we can use the approximate formulae propasedatarzynski et al.
(2006), which ignore harmonics. These give identical tsdol the simulations
presented in this thesis, because low harmonics are ssdiHadd.

For numerical calculations we renormalize all the emisigigP(x, y) to guar-
antee the correct cooling rate given by equation (3.28).rAexample, in Figure
3.1 we plot the cyclo-synchrotron emissivities from a sengllectron for diterent
relativistic momentap.
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Figure 3.1: Single-electron synchrotron emissivitiesdifierent momenta.
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Chapter 4

Coulomb collisions

4.1 Introduction

Although the process of Coulomb scattering between elegfyositrons does not
involve radiation, it can have a significant impact on thectfaethat emerge from
hot plasmas through its influence on the particle distrdngi If one considers
particles of a single species (e.g. electrons), the mfieceof Coulomb colli-
sions is relaxation of the distribution into a Maxwelliane(i thermal distribu-
tion). In high-energy astrophysics one frequently encexsprocesses that are
capable of accelerating particles into relativistic nbarmal distributions, which
subsequently cool by inverse-Compton scattering/@nslynchrotron radiation.
Typically, at transrelativistic energies thermalizatinocesses such as Coulomb
scattering and synchrotron self-absorption begin to caenpéth these cooling
mechanisms, which can lead to a so-called “hybrid” distrdou of particles:
lower-energy Maxwellian with a high-energy non-thermadl tAs a well-known
example, such hybrid distributions are expected to be resple for the hard-
state spectra of accreting black-hole binaries which eaitut-df near 100 keV,
followed by a MeV talil.

To properly account for thefiects of Coulomb scattering on the particle dis-
tributions, we need an appropriate kinetic equation, whanibe written down in
a similar relativistic invariant form as was done for Compszattering and pair-
production. However, its direct application is preventgdte well-known diver-
gence property of the Coulomb cross-section. fedent approach is therefore
needed. The birth of the kinetic theory of fully ionized gasan be associated
with the paper by Landau (1937). In this work the kinetic dopmafor particle-
particle interactions was written in terms of what is now mnoas the Landau
collision integral. This approach treats energy excharejevéen particles as a
continuous rather that discrete process and charactehaesy/olution of the dis-
tribution in terms of a flux in momentum space. The treatmertandau (1937)
was non-relativistic, a generalization of the collisiotegral to arbitrary particle
energies was done in Belyaev & Budker (1956).

73
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The Landau collision integral formalism can treat disttibos with arbitrary
shape in momentum and physical space. If the problem isoiatrhowever, the
kinetic equation simplifies to a standard 1-dimensionakiéolPlanck equation in
energy space. Determining the collision integral in thsecgeduces to calculating
the average rate of change pf(energy gaifloss) andy? (diffusion) of a test
particle interacting with the distribution, wheyeis the particle’s Lorentz factor.
In the non-relativistic case, the energy exchange rate aftecge in a fully ionized
plasma was calculated in the original paper by Landau (19&7yeneralization
to relativistic energies was done in Frankel et al. (1979 @ifusion codicient
in general case was found in Nayakshin & Melia (1998).

We will start with the relativistic kinetic equation and derthe Landau colli-
sion integral by assuming that the engrggmentum transfer is small in a single
scattering event. Thereafter we will proceed to the isatropse, which enables
us to perform the angular integrals in the collision intégwad obtain a second
order diferential equation for evolution of the distribution in egpespace.

4.2 Relativistic kinetic equation

Let’s consider a distribution of electrons and positronthywhase space densities
n_(p) andri,(p), wherepis the dimensionless momentum. The relativistic kinetic
equation describing the evolution of either species itarg with both electrons
and positrons via Coulomb collisions is

N 2 [ dPp,d®p; dPp’
plm(p):rz—f— ,
= S A R A

X [Re( PPN (P) — Re(P)N-(P)] (4.1)
whererie = ii_ + i, and the four-momenta are defined in the usual wap as

{y, pl = {y, pR} = y{1, BQ}. The invariant reaction rate for Mgller scattering (i.e.
e e ande’e’) is (Berestetskii et al. 1982)

s(p, + P— P, ~ P) Feou

2

b, ¢ 1-4¢6

Feoy = +1) + ———— +4, 4.2

=leitaoitY Teene-n (@2
where the scalar products of particles’ four-momenta afie el as

§=p-p=p P, &=p-p=pp (4.3)

The corresponding rates for Bhabb&e® scattering are nearly the same in the
small-angle scattering approximation (see e.g. Baring/ 1@®ppi & Blandford
1990), therefore we make no distinction between electronspasitrons in this
chapter.
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What immediately stands out in the reaction rate (4.2) isliiergence when
& or &, approaches unity, which corresponds to the case where thelgsl mo-
menta change very little upon scattering. This is a marafest of the well-
known divergence of the Coulomb scattering cross-sectosall-angle scat-
terings. Sincd-cq is not integrable, we cannot use the kinetic equation (4 1) a
stands. Instead, we can make use of the fact that very Iitdegy gets exchanged
upon each small-angle scattering which nevertheless dgaethe total exchange
rate over large-angle scatterings. Therefore the changeafticle’s energy can
be treated as a continuous process in which case the evolitithe distribu-
tion is described by a Fokker-Planck equation. Thus the leish@pproach to
the problem would be to take the Fokker-Planck equation\aangind determine
the codlficients in the equation from comparison with the moments ekihetic
equation (4.1). This has been done in several works (e.gnére& Liang 1989;
Nayakshin & Melia 1998). Another more elaborate approaghlues exploiting
the symmetry properties of the reaction rate as well as ttteétat the momentum
transfer is small taderive a differential (Fokker-Planck) equation directly from
the kinetic equation. In this case the energy exchange agagsvelomentum space
diffusion are described by the so-called Landau collision nateg

4.3 Landau collision integral
Let us start by writing the kinetic equation (4.1) in the form

9 . 2
(—+989~V)n+(p)=A—gfd3p1fd3qw(p,p1—> p+d,p— Q)
C

ot
X [Ae(P)AL(P) — Re(p)RL(P)] . (4.4)

whereq = p — p = p, — p; is the transferred momentum. The scattering rate is
defined as

d3p/
_ 2 1 n
w(p, p, — p+ q,pl—Q)—Creyyly, " 5(El+£) El E)FcOul
cr2 . cr2
= P oty +v1—v =71 Feou = ; 0 +é1—0e—1)Fcoun  (4.5)
YYY'Y1 YY1y
where we have defined
qe:E-El:E’.E’l (4.6)

and used the identity

y+y1—7 —7) =710E+&1-0— 1) (4.7)
After performing the three-dimensional integral in eqoati(4.5), we have to
substitutey; = /p;>+ 1, wherep, = p,+ p— p = p, — . Also, we have
Y = 4/p?+1, wherep = p+ Q.



76 CHAPTER 4. COULOMB COLLISIONS

The scattering rate/ has the following symmetries

WP, pL— P+G. P —d) =W(P+0 p—g— P.py)

=W(p, P— P+ 0. Py~ Q) =W(p,p = P~ 0. P+ Q). (4.8)
The last two equalities in equation (4.8) are applicablg drthe interacting par-
ticles are identical. The first equality represents micopscreversibility, i.e. the

symmetry upon the interchange of initial and final parti¢kges. This allows us
to writew as

9,_4 )
W(D+ > Py 2,q ) (4.9)
in which case the symmetry property reads

9,_4 )_ ( 9,_9_ )

To derive the Fokker-Planck equation from the kinetic eigma4.4), we will
regard the transferred momentum as a small parameter anekpéndw, i, and
f. in Taylor series iy aroundp and p;. We have

on.(p . , . one(py)
api _ni(p) ap|l ]

*e(p1) _, ON(p) Me(py)
ap,op; o apy

[Ae(PDF(P) - Fie( )R- (P)] ~ df [ﬁE(pl)

*n.(p) | o

+5ddg [ﬁe(pl) ] (@.11)

and

q q

1 . [ow(p, p,, ow(p, p;,
W(P+§,pl—E,Q)~W(p,p1,q)+§q'[ (P. P, Q) _ OW(p. pr. )

op' ap;
Inserting the expansions (4.11) and (4.12) into equatiof) (e see that the first

order term vanishes upon integration ougq sinceq'w(p, p;, g) is antisymmetric
in g. The second order terms give

0 c oy 2 (s 3. L i
(a+q89~v)ni(p)—ﬂ%fd plquzqq’
PP | o o PPelP) _, OR(P) 6ﬁe(pl)]

] . (4.12)

AL W : .
op'op’ ®) opLop; op opl
oW(p, p, Q) WP, pr, q)] [ on.(p) . . AR pl)]

+ : - : fle = _f(p) —=
[ 2! o OF TG

_2 3 3 L i
_/lgfdplququ

a0 " on(p) . .. 9Ne(py)
x(a—w—a—m){w(p,pl,q)[ne(pl) I —ni(p)a—p,.]}. (4.13)

1

X {W( p’ pl’ q) lﬁe( pl)
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Note that the integral ovei®p; of the derivatived/dp| vanishes and we have
finally

9 5
(a +(‘,89V)ni(p) = —6—pi, (414)

where we have defined the so-called Landau collision intégemdau 1937; see
also Lifshitz & Pitaevskii 1981)

P2 N one(p) . on.(p) | i 3
s = ﬂ—%f n.(p) 6—pjl — Ne(py) a—pﬂ] B"(p, py) d°ps, (4.15)
where
, 1 .
BY(p,py) = 5 f q'o’ w(p, py. ) d°q (4.16)

is a spatial tensor that is symmetriciin> j as well asp < p;. The collision
integrals can be regarded as the particle flux in momentum space, gigog-

tion (4.14) the meaning of a continuity equation in 6-dimenal phase space.
Together with equations (4.15) and (4.16) the second oridarential equation
(4.14) describes the evolution of the particle distribatio phase space due to
interactions with an arbitrary target distribution. IngHorm it is quite general
and is not limited to Coulomb collisions, the only requirerhor its validity is

that the energymomentum exchange can be regarded as a continuous prodless. A
the physics in contained in the quant®y, which we will evaluate separately for
non-relativistic and relativistic (general) cases.

4.3.1 Non-relativistic treatment
Rewriting the scattering rate as
wdiq = |v - vi|do, (4.17)

wherev andv; are the velocities of the interacting particles, equatbig) be-
comes

Bl = %fqiqj IV —vi|do. (4.18)

Assuming the scattering angle is small, the transferred embomq is approx-
imately perpendicular to the relative velocity of the pads before collision,
therefore!

BI(v —v))=0. (4.19)

ISince in this subsection we are working in Cartesian thpese, we make no distinction
between covariant and contravariant vector component& stimmation convention therefore
applies for repeated upper or lower indices.
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A tensor satisfying this condition has to be of the form

N T Y (VYA T (v )
Bi = =B s = 1 1 4.20
2 lé (V—vp)? ’ (4.20)
whereB is the trace
1 2
B=Bj= > gV — v4| do-. (4.21)

For small scattering angles one can winteq ~ u|v — v4| 6, whereé is the
scattering angle in the centre-of-momentum frame and the reduced mass.
ThereforeB becomes

2 1
B= ﬁ v—viPo, where o= 5 f@z do. (4.22)
The diferential cross-section is approximated by the Rutherfonahéila
dor ~ 4etdQ _ 8retds , (4.23)
pA(V =)t 0t P (V- Vi)t 63
whereby the quantity, becomes
4ret de
=———1InA h InA = | — 4.24
o 2y nA, where f ) ( )
is the Coulomb logarithm. For the tend8f we get
o oonet 1 I (VASRVA (VSR
B = InA |6 - 1 1. 4.25
(e v—vs V-2 (4:29)

4.3.2 Relativistic treatment

Although not manifestly covariant, the analysis of the pding section up to
equation (4.16) is not limited by the particles’ energiesl @ therefore valid
also in relativistic case, provided that the correct reistic ratew is used. It

is possible, in principle, to calculate the components eftémsorB'/ entering the
collision integral directly from equations (4.16) and (4.5 owever, it is much
simpler to employ the properties &’ to make an educated guess what form it
should take. Let’s start by noting thay, wd®q is a Lorentz-invariant quantity.
Indeed, from equation (4.5) we have

d3 / d3 /
yyiw(p. pr. o) d®q = cr2 y,p f yl,ol o(p, + P~ P, = P)Foou  (4.26)
1

2Here we are approximating(p, p;, q) ~ wW(p+ a/2, p, - 9/2, g), which we can do if we are
interested in only second order termsgH.
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whered®p'/y’ = dq/y’, &*p;/y}, Fcou @s well as the four-dimensional delta-
function are all Lorentz-invariant. We can now define a Létzé¢ansor

1
W = ST f q* o’ w(p, p,, ) d°q, (4.27)

whereq® and¢f are the components of thieur-momentum transferred in a scat-
tering event. Obviously, the components of the 3-terBobrare related to the
spatial components &% as

\N'J
B = (4.28)
)’71

Let's proceed by calculating the quantiy,. Using equations (4.27) and
(4.5), we get

1, (dBp
MEWZ ECI’e 7q Qo 6(€ +&1—0e— 1) Feoun (4.29)

Note that as an invariant scalar it can be evaluated in anydyahich we choose
to be the centre-of-momentum frame. Using the identities

Yem = Yicms Pem t Prem = 0, Qe=YY1— P P = Zygm -1 (4.30)
we find

0 ('}’E:m ~ Yem)

4.31
2 (4.31)

6(¢+&-0-1)=06(p - (P+p)-pP-p,-1=

Putting this in equation (4.29) and noting th&p’/y’ = py, dy.y, AL, We get
after taking thedy,,,, integral

=-cr? @ fq 0o Feou 9%, (4.32)
With y{,, = vem, the scalar producﬁandgl enteringFcoy become

&= ng(l - pgm COSHcm), &= ng(l + pgm COSHcm), (4.33)

whereé., is the scattering angle in the CM-frame. We also find

q"0e = (P = P)P, — Pa) =2(1-¢)
2p2.. Sir? O

= —2pZn(1 - cOStem) = "L+ cosg)”
cm

(4.34)

In terms of CM-frame quantities the invariant reaction &g, given by equation
(4.2) takes the form (Mgller 1932; Jauch & Rohrlich 1976)

4 (’)’gm + p%m)2 n 1- 4')/cm(')’cm + pcm)

_ 41 (4.35)
p4. sin Oem p4 . sirf Ocm

Fecoul =
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In the small-angle scattering approximation, it is the irgderm on the right-
hand side of equation (4.35) that makes the dominant canitibto the scattering
rate. It is therefore common practice to neglect the othendealtogether. The
error that one makes by doing this is small compared to uaicdikts arising from
evaluating the Coulomb logarithm.

Inserting equations (4.34) and (4.35) into (4.32) and wgitQ,,,, = d cOSOcm Adem,
we get

(Van + Pon)?

W= -2rcrInA -0 (4.36)
YemPem
where
2 dcosé de
InA :f —— zf . (4.37)
1+ c0S8cm Sir? o Bcm
This can be written in terms of the Lorentz-invariant quigi as
2 a2
_ e
W = —4rcri InA —(qé 1y (4.38)

if we observe that

1 1/2
Ven+ Pen=P P, =G and yemPem=3[(p-p)*~1] "= (E-1)*2
(4.39)

Owing to the fact that?,, = 0, the time components of tensé vanish in
the CM-frame:

W20 = Wl =, (4.40)

Using this and also the fact thpt,,, is nearly perpendicular tq.,, for small-angle
scattering, we find that

WQ'B p'g = WQ'B pl,ﬁ = O, (441)

since these scalar products vanish in the CM frame and if arter4-vector is
zero in one frame itis zero in all frames.

Let us now try to determine the form of the ten&f?. In addition to be-
ing symmetric in the two indicesV*# also has to be symmetric with respect to
switching the particles’ momenta. The most general formuchgensor, depend-
ing only on 4-vectorp and P, is (Belyaev & Budker 1956; Lifshitz & Pitaevskii
1981)

W = An™ + B(p"p’ + pip) + C(p"P + pipf), (4.42)
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wheren® is the Minkowski tensor. The scalar dheientsA, B andC can be
determined from conditions (4.38) and (4.41), giving

W W qe
A= —, B= = 4.43
2 2@-1) 2@-1 (@49
whereby equation (4.42) becomes
% 2 Ge
b __ e
W* = 2rcri InA (@ 1772
x {=(G8 = Dn™” = (0" + i p}) + Qe (P71 + D5 P")). (4.44)
The 3-tensoB'! is now simply
1 o2
BY =2rcr2 InA — ——2__
yy1 (0 — 1)¥2
x {(@@-1)6" - (p'p’ + pyp) + e (PP} + PLP)).- (4.45)

It can be shown thaB'! defined by the preceding equation satisfies the condition
BIvi = BIV, (4.46)

wherev! = cpl/y andvi = cpi/yl are three-velocities. Equation (4.46) is identical
to condition (4.19) obtained in the non-relativistic cadéso, it is easy to verify
thatB'l given by equation (4.45) reduces to equation (4.25) in thenetativistic
limit.

4.3.3 Collision integral in the isotropic case

The evolution of the electron distribution due to Coulomhtsering in general
case is determined by equations (4.14), (4.15) and (4.4%weMer, let's now
assume that the distributions of the interacting partiakesisotropic. In this case
the kinetic equation (4.14) reduces to a scalar second-drfferential equation.
Consider the collision integral given by equation (4.1%)t iSotropic particle
distribution functions the gradients of the occupation bers becomé

on.(p) . on.(p)

_p oNe(p1) _ j ONe(p1)
ap!

and :
ap ap; =R Iy

, (4.47)

wherep and p”’l are unit vectors pointing in the directions pf and pi, respec-
tively. Thus using the identitied®p; = p2dp; dQ; and pdp = ydy we can write

3As before, we do not distinguish between covariant and egatiant indices in Cartesian
three-space.
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the momentum space flux (4.15) as

_ [ ( )fane(pl) idplf& f)iBijdﬂl
- ) © oy pictes [ ppJB”dQ] (4.48)

By virtue of relation (4.46) the last integrals in both terim¢4.48) are equal, i.e.

K = lA'B”dQ fppJB”dQ (4.49)

so we only need to calculate one of them.

As a sidenote, observe that for Maxwellian energy distimgoney /dy =
—fiem/®, Where® = kT/mc?, and therefores = 0 as one would expect in equi-
librium.

In order to determin&’ we first need to evaluatg B'l. To simplify the nota-
tion equation (4.45) foB'/, we identify

Yiel = YY1 — P P = Qe Prel = qg -1 (4.50)

as the Lorentz factor and momentum of one particle in thefraste of the other.
The scalar produgb;B,; now becomes

- 1
p'B = 27cr? InA—M

m prel

x {p?e| p-pp- F = (p- Py Py + v [ (- 1) P+ PP ffl]}- (4.51)

The relation (4.51) describes a three-vector, which we o#ate into the frame
where it is most convenient to take the angular integi€), (is rotational invari-
ant). After taking the integral we can perform a rotationktxthe lab frame.
Let’s choose this frame in such way that the three-axis pdmthe direction of
(fixed) . In this frame we have

p={0,0, p}, p, = p1{SiN@cosg, Sind sing, cosh}, (4.52)

whered is the angle betweep and p;, and¢ is the azimuthal angle defined on
a plane perpendicular tp and measured from an arbitrary reference direction
(say, from the projection of the lab-frame 3-axis onto thee). The solid angle
element igdQ; = dcosd d¢.

We now notice that upon taking the integral in this frame trst fivo compo-
nents { = 1, 2) of K' vanish. Indeed, inserting equation (4.51) into (4.49) we se

that in the terms proportional tp, We encounter integrals Iikﬁ’r singdg = 0
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andfOZ" cos¢ d¢ = 0 in the first two components. Of course, in terms proporfiona
to p' these components are equal to zero by definition. We areftihereoncerned
only with the third component of the vectptB', which becomes

L 1 12
p/BY = 27cr2 InA — 2@

2 (P — P = P + 2y PP) . (4.53)
4! prel

whereu = cosé. For taking the integral it is more convenient to write equat
(4.53) in terms of the relative Lorentz factgg, instead ofu. To do this we write
equation (4.50) ag.; = yy1 — ppwu. EXpressing: and substituting into equation
(4.53) gives

pE¥ = 2ncr2 InA etz g Oyl o
- re! rel ’
e Y7 p?el rel p2
(4.54)
which, after some manipulation, can be written as
i @3] 2 1 y2 vy
p'B% = 2rcri InA — =2 (v, — v 4.55
P e Y p2 p;r:,el ()/rel )’rel) (7rel )/rel) ( )
where we have defined
Yiel = YY1+ PP and v = yy1- pp. (4.56)

The diferential solid angle in the expression (4.49) Kdrcan be written as

d, = - D= dd (4.57)

pPP1

where we have used the relatiope; = —pp: du. The three-component &f now
becomes

Z d)’rel

K3(y,y1) = 21 P pIBY = K(y.72), (4.58)

yr_el p pl

the azimuthal integral contributingrZince the integrand does not dependson
Inserting expression (4.55) into (4.58) and defining

7r+e| ,)/2 B
A@Jﬂ=bf Yiel () (et = ¥i) Ay (4.59)

Yrel rel

we will have

L A y). (4.60)

K(y,y1) = 4r%cr2 InA
' © YY1PP1 P
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The integral in equation (4.59) is elementary and gives
2 2 1
Ay, y1) = { - (7 +y1t E) INCyrel + Prer)

(4.61)

1 Vel
+ — |7 O +93) = 27| + P (2771 - i)}
Prel 2 Yol
The next step in our derivation is to note that the vettopoints in the same
direction asp', since for both of these only the third component has a nonzer
value in the frame we are working in. Therefore, rotatiomw iah arbitrary frame

gives

K'=p'K(y.7). (4.62)

The momentum space flux (4.48) is proportionaKioand can be written in a
similar manner

s = p's(p), (4.63)
where
on on, -

)= 5 10 [ TP K pips - T [ ) K i
(4.64)

For later use let’s rewrite the last equation as

Sp) = = {m(p) [ Putp 5~ brapa K]
C
on, o

el LR CAR A TS

The divergence of the momentum space flux on the right-hashel i the
evolution equation (4.14) takes the form

as a[ S()] 3 P) [S(p)

op ~ op o Pap

S LGB

The isotropic evolution equation is

on.(pp _ 19
ot - p2ap

[*s(p)] (4.67)

where spatial homogeneity has been assumed.



4.3. LANDAU COLLISION INTEGRAL 85

Let’'s now try to write equation (4.67) in the standard formtloé difusion
equation in energy space, namely

ONu(y) 0

ot “5{ N.() - ——[D(y)N (y)]} (4.68)

wherey andD(y) are the energy exchange anéfasion codicients, respectively.
For isotropic distributions the particle densit(y) is related to the occupation
number as

NG) = = 4y DA(P) (4.69)
C

Using the expression (4.65), the quantity in square braakethe right-hand side
of equation (4.67) can be written in the following form

2y 1 ( 2 ) N.(y) [ Ne(y1)dy:
PP =G \E) e )
{6 [Pk y)| [ P2PryaK (7)) }
X _
dy oy1

1 (2" 9 [NG) [(NO)dn
_(4n)2(fg) 5{ vp vip: valK(y,yl)}. (4.70)

SubstitutingK(y, y1) from equation (4.60), this becomes

2 )—1 -~ {N+(7) Ne(y1) dy1 [5A(y,'yl) B aA(y,yl)]

1
2 = Zep? (_
<) 47 °\23 YP Y1P1 dy 1

[ N. (7’) Ne()’l) d)’l
“av| yp Y1P1

Putting this into equation (4.67) and substitutmgp) from equation (4.69), we
find

A()/, 71)

}. (4.71)

ON. 0
at(Y) = {Ni(v) f a(y, y1) Ne(y1) dy1
Y
10
- 53 [Ne0) [ momanlf .72
where we have defined
3corInA
d(y,y1) = > ——— Ay, 71) (4.73)
4 yy1pps

and

aly,y1) = =
-7) 8 yy1pp1 dy Ov1
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Equation (4.72) has the same form as (4.68) if we identify

j = f aly.7)Ney)dy: and D(y) = f A7) Ne(ys) dys.  (4.75)

Together with equation (4.61), we have an explicit expmasiir the difusion
codficientd(y, y1). To find an explicit expression for the energy exchange-coef
ficient a(y, y1), let's calculate the expression in the square brackets)iraton
(4.74), using the definition (4.59). Since the integranddoation (4.59) is zero
in both the upper and lower integration limits, the derivatvery can be written
as

IA(y, Vrel yrz 0 N _
(y yl) B f . [(Yrel - )’rel) (7rel - )/rel)] d)’rel- (476)

dy Yrel pr3el dy

The derivative under the integral is

+
rel

L 97
W (7rel - 7re|) - a_yrel ()’:el - 7re|)

= 2(y1Yre — ¥)- (4.77)
BecauseA(y, y1) is symmetric, its derivative with respect 4q is given by ex-

pressions (4.76) and (4.77) with the argumengndy; reversed. The cdicient
a(y, y1) now becomes

% [(y:rel — Vret) (Yrel = Vi) =

3corInA
a(y,y1) = - — (y1 =) x(v,v1), (4.78)
4 yy1pp1
where
Vel Yooy (Veel + 1) +1 Ve
x(v,v1) = f % Ayrel = | Pret — Y7 2 IN(yrer + pre|)] . (4.79)
Yrel rel Prel Vel

The interpretation of andD(y) as energy exchange andidsion codicients
can be made clear by directly calculating the average rathafge ofy’ — y
and ¢’ — y)? for a test-particle interacting with a given target disitibn. This
was done by Frankel et al. (1979) and Nayakshin & Melia (1988jhe energy
exchange and fusion codicients, respectively. The expressions obtained in
these works are identical to the ones derived here. On pddygicunds this result
should be expected, however mathematically it seems cgrtankable due to the
different approximations made along the way. On the other hitlkdose approx-
imations boil down to the assumption of the dominance of barajle scatterings
and simply lead to slightly dierent definitions of the Coulomb logarithm.

Simple approximate expressions for the energy exchangéiffiadion coef-
ficients can be obtained by using the one-point trapezoigdel to approximate
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Figure 4.1: Energy exchange rate of a test particle interqatith a mono-
energetic background distribution withfiirent Lorentz factors,. Solid lines
correspond to the exact expression (4.78), dashed linesspand to the approxi-
mation (4.80). Note that far; = 300 the curves corresponding to the approximate
and exact expressions are indistinguishable.

the integral in equation (4.79) and the 3-point Simpsons to approximate the
integral in equation (4.59):

3 —

A
2 (rri- D)2 -1

and -
Vylp p]_

[ryn? - 1172

which agree with the exact cfieients reasonably well, except in the regipr:

v1. In Figures 4.1 and 4.2 we plot the energy exchange affidsitbn codicients
given by equations (4.78) and (4.73) foffdrent target photon energies, together
with the approximate expressions (4.80) and (4.81).

d(y,y1) ~ corIn A (4.81)
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Figure 4.2: The dtusion codficient for a particle interacting with a mono-
energetic background distribution withfidirent Lorentz factory,. Solid and

dashed lines correspond to the exact and approximate exmpnes(4.73) and
(4.81), respectively. Note that both axes are in logarithumits.
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Chapter 5

Kinetic equations

We are considering a region of relativistic plasma of chdngarticles (electrons
and positrons, which we call “electrons” below if the relev@rocesses, e.g.
Compton scattering and synchrotron, operate identicallypath types of parti-
cles) permeated by radiation and tangled magnetic fieldsstgy the evolution
of lepton and photon distributions by solving the time-degent coupled kinetic
equations accounting for synchrotron emission and absorgompton scatter-
ing, Coulomb scattering, and electron-positron pair pobidn and annihilation.
To do this we first need to collect the kinetic equations dbsyy different pro-
cesses discussed in the preceding sections and rewriteihiemm that is most
suitable for numerical calculations. We make a simplify@sgumption of homo-
geneity and isotropy of the particle distributions. Theager of radiation (and
also electrons) from the region is modeled by a simple espegigbility formal-
ism. The energization of electrons is modeled either thnangection of high-
energy electrons or flusive acceleration within the active region, which allows
us to accommodate fikerent physical mechanisms through which energy transfer
to electrons can be realized.

5.1 Distribution functions

The dimensionless four-momentum of a photon is {x, X} = X{1, w}, wherew
is the unit vector in the photon propagation direction ane hy/mec?. The pho-
ton distribution can be described by the occupation numgeor by the photon
number density per linear and logarithmic interval of pmoémergy:

Noh = prh(x) dx = fnph(x) dinx = /133 fdzwfﬁph(x) xdx, (5.1
c

wherelc = h/mec is the Compton wavelength. FunctioNg,(x) andri,, are used

in general forms of kinetic equations angl(x) is convenient for numerical work.
The dimensionless electron (positron) four-momentumimdd asp = {y, p}

= {y, pQ} = {1, 8Q}, whereQ is the unit vector in the electron propagation di-

91
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rection,y, 8, andp = By = +/y? — 1 are the electron Lorentz factor, dimensionless
velocity and momentum, respectively. We can use subscrifaiisd — to distin-
guish between positrons and electrons. The elefositron distributions can be
defined in a number of alternative ways (normalized to thember density):

N = [Ny = [ n+(p)dlnp:/l% [¢a [nmram 62

The occupation number.(p) and the density per unit Lorentz factor are useful
guantities used in general kinetic equations, while theteda density per loga-
rithmic momentum intervab.(p) is more appropriate for numerical work. For the
processes, where the distinction between electrons antlqrssis unnecessary,
we use the sum of the distributions, for examples= n_ + n,.

5.2 General form of the kinetic equations

The relativistic kinetic equation (RKE) describing the kxmn of the occupation
numbem;(p,) of species 1 (electron or photon) as a result of binary sioltis can
be written in the covariant form (de Groot et al. 1980)

N d*p, diPps
p, - Viu(py) = fe—pzﬁﬁd(gl +P,— P, — P)Wizz

2 € €&

X [Ag(Pa)Ra(py) — Ma(P)R2(P,)] . (5.3)

whereV = {d/cot, V} is the four-gradientg is the zeroth component of the cor-
responding four-momentum, anih, .3, = Ws4.,1, iS @ Lorentz scalar transition
rate, which possesses the obvious symmetry. In this equaltie non-linear terms
related to fermion degeneracy and induced photon scajtar® omitted. As it
stands, the right-hand side of equation (5.3) accounth®ordte of one particular
process. To determine the full evolution of We should therefore sum up the
collisional integrals accounting for all relevant process

In the frame where the particle distributions are isotrdpie call this frame
E), the kinetic equation can be represented in the form (skgopubscript 1):

DA(p)
Dt

: (5.4)

coll

where the momentum derivative term accounts for continemesgy gaifioss
processes, while the right-hand side contains all disnantis processes such as
scattering, emission, absorption and escape. The qua#itind D(e) account
for systematic particle heatifgpoling and difusion in energy space, respectively.
Both are generally energy-dependent for the processeseveoasidering here.
For the following discussion it is convenient to decompdsekinetic equations



5.3. ESCAPE PROBABILITY FORMALISM 93

in terms of the contributions from fierent physical processes as

ONpn(X) . . . Npn(X)
pat = nphsyn(x) + nph,cs(x) + nphpp(x) - t + Qph, (5-5)
on, ) . ; . n,
5t(p) = Nysyn(P) + Necs(P) + N pp(P) + N coul(P) — t_(p) +Q., (5.6)
+,eSC

where syn, cs, pp and Coul stand for synchrotron, Comptaoitesicey, pair pro-
duction (and annihilation), and Coulomb scattering, respely. The terms de-
scribing physical processes can contain botledential and integral parts, de-
pending on the nature of the process and the way we find mogéommt to treat
it. Thus the equation for photons has the form:

0 0 0
00 a0
[ Konlx () din - ”"“(hx) +Spn (5.7)
p

Here the diferential term is responsible for Compton scattering fifugdion ap-
proximation, while the integral term with kernk},, describes scattering that can
be resolved on the grid. The sink term1/ty, describes photon absorption (by
synchrotron and pair-production) and scattering as wethasscape, whil&,
gives the contribution from pair annihilation, synchretemission and other (e.g.
blackbody) photon injections.

Similarly, for electrons and positrons we write

on.(p) ___o n.(p)
ot~ ainp [Ae(p)ni(p) — Be(P) 71 D
- [ Kep.ponatpy dinp - = 1 s, 58)

where coéficientsA. and B, describe electron cooling, heating andfasion as

a result of synchrotron emission and absorption, Comptatiesing in Thomson
limit, Coulomb scattering as well as possiblédsive particle acceleration. The
integral term with kerneK, describes Compton scattering in Klein-Nishina limit
into the bin and the sink terme 1/t. gives the scattering from the bin as well
as the electron escape and pair annihilation. The souroe Sercontains pair
production as well as a possible electron injection term.

5.3 Escape probability formalism

As we are studying radiative processes in a simple one-zanmesfvork neglecting
the radiative transportkects, we must include an escape term in equation (5.5) to
allow for the fact that photons can leave the emission regidimite sizeR and
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produce the radiation flux that is actually observed. Thécglescape timescale
is usually estimated from random walk arguments resultirtgsi ~ R(1 + 75c)/C,
whererg. is the scattering opacity. Such form accounts for the faatithmultiple
scatterings are importants( > 1), photons have to 'fliuse’ out of the medium
and the escape time is prolonged by a faetgrHowever, it does not account for
the fact that if the medium is absorptive, a typical photonnea difuse further
than the thermalization lengl) = [aa(ea + as)] Y2 before it is destroyedaf,
andas. are extinction cogicients due to absorption and scattering, respectively).
To incorporate bothféects, we employ the solution of a simple radiativédi
sion problem in a sphere of radil&swith constant emissivity, absorptivity and
monochromatic scattering. The escape timescale is estihist comparing the
emergent flux to the radiation density inside the source. |&\diearly an over-
simplification, such estimation nevertheless has the el@groperties mentioned
above.

Defining the &ective optical thickness of the medium@as= 374(1a + 7so),
wheret, = agR andrs. = asR are optical thicknesses due to absorption and
scattering, respectively, we find

2R V3 o~ (1 _ e—ZT*) 3
tesc= %{14_ Zm [T* (1+eZ)—(1-e2) - T_*]}’ (5.9)

whered = ase/(aa + ase) is the single-scattering albedo. If the medium is translu-
cent * < 1), equation (5.9) reduces to a more familiar form

2R 3
tesc = % (l + ETSC) . (510)

In our simulationsg, includes cyclo-synchrotron absorption and photon-photon
pair production, ands is the extinction coféicient for Compton scattering.

5.4 Compton scattering

5.4.1 Compton scattering of photons

The explicitly covariant form of RKE for Compton scatteriofphotons ignoring
non-linear terms is (Pomraning 1973; Nagirner & Poutaned)]9

2 2 3 3 3
12 (dotndn,,
2/1(: Y Y1 X —1

X [ Apn(X1)Re(pr) — on()Tie(P) | (5.11)

wherer, is the classical electron radiug, is the Klein-Nishina reaction rate
(Berestetskii et al. 1982)

2
F:(}_£)+2(}_l)+£+é, (5.12)
& & & &) & €

X zﬁph(x) =



5.4. COMPTON SCATTERING 95

andé¢ = p,-X; = P-X andéy = p_-x = p-X, are the scalar products of four-vectors.

We assume the existence of a reference frame where thel@anid photon
distributions are approximately homogeneous and isatropinder the spacial
homogeneity assumption we can write equation (5.11) as

Dfpn(X) - " 1 [ d® ,
P = om0 Ne P + e, [ S Rl = ) ()
1
(5.13)

The scattering cross-section (in units of Thomson crosteseo ) is given by

coll,cs

— 3 2 1 d3p d3p1 d3X1 -
S0 Tk ) g HPF AR P (619

and the redistribution function is
3 2 depdip;
X X) = — —_— n Fo + X, — P — X). 5.15
Rt =0 = g [ PR MR F o+ -p-0. (619

For isotropic particle distributions in frante, equation (5.13) can be written
as
Dt

- o vilis — .
= €01 So(X) Ne fipn(X) + CorNe—- f X10%1 Ron(X, X1) Fiph(X4),

(5.16)
where the redistribution function averaged over the cosfrike scattering angle
u=X-X1/(XX1) = w - wq IS expressed via an integral over the electron distribution
(Nagirner & Poutanen 1994):

coll,cs

- 1 3 2 (™ 3 y

S I DL S EALUAL A
(5.17)

Here

— 1 d®
Ron(X X1,71) = 7— P1 f 7pd291 d°w; F 6(p, + %, - p- X). (5.18)

and the lower limit of the second integral in equation (5.dgines from the con-
dition of energy and momentum conservation and is given ipelglix A.6. The
integrals in equation (5.18) can be calculated analyyiq@dtinkmann 1984; Na-
girner & Poutanen 1994) to obtain a fully general expressﬁnrﬁph(x, X1, Y1)
valid in all regimes (see Appendix A.8). This is an altermatiorm of the func-
tion derived by Jones (1968).

Since the total number of particles is conserved in Comptattering, multi-
plying the right-hand side of equation (5.16) ¥¥integrating overdx must give
zero, implying a relation between the redistribution fumctand the extinction
codficient (Nagirner & Poutanen 1994)

9= [ Rl xa (5.19)
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This can also be inferred directly from the definitions (5.44d (5.15).
In the kinetic equation (5.5) for the photon densigy(x) the Compton term is
obtained by multiplying equation (5.16) by.8.3x*.

5.4.2 Compton scattering of electrons and positrons

The description of Compton scattering for electrons andtimws is very similar
to that for photons. In the linear approximation the RKE sead

v d3x d3x, dp,
[nph(xl)ni(pl) — Fn()R.(P)] (5.20)
Neglecting spatial gradients, equation (5.20) becomes
Dfi. d3
DL . o m(pN hn+(p)+caTNph—f P R(py = ) (P,
Dt lcolics Y

(5.21)
where the scattering cross-section for electrons is

3 21 d3xd3x1d3p1~
167T/l?éNph7 X X1

So(p) = Aon(X) Fo(p, +x,-p-X  (5.22)

and the redistribution function

3 2 d3x d3x;
— ——— fpn(X1) F 6(p, + X, — 5.23
160 /l:éNph — Apn(X1) (p P- X). ( )

Re(py = p) =

Making use of the isotropy of the problem, we can rewrite timet#c equation in
frameE for isotropic distributiomZ(p):

Di..(p)
Dt

_ N 4 — -
= —C ot S(p) Npn N.(p) + CG-TNph77T f p1dy1 Re(p, p1) N.(P1),
(5.24)

coll,cs

where the electron redistribution function averaged owsire of the electron
scattering angl@e is

00

Fee(% Y1, X1) Apn(X1) dxq,
(5.25)

_ 1! 3
D) = = — p) due =
Re(p pl) 2 f:l Re(pl p) He 16 /l%Nph Xe (¥5¥1)

where

Ry, y1, %) = i X, f d—Xdzwl 0?0, F 6(p, + X, ~ P~ ¥) (5.26)



5.5. PAIR PRODUCTION AND PAIR ANNIHILATION 97

and
X(v.v1) =y —v+1p—pll/2 (5.27)
The relation between the redistribution function and thinefion codficient is

(p) =2 f Re(P1. P) Pr . (5.28)
Y

Not surprisingly, there turns out to be a relation betweerquhantities_?ph and
R. (proved in Appendix A.7), namely

pplﬁe(% Y1, X1) = Xxlﬁph(X, X1, Y1), (5.29)

together with the energy conservation condition y = x; + y;. Through equa-

tions (5.29) and (5.18) we have a generally valid expressiemforRe(y, y1, X1).
In the kinetic equation (5.6) for the electron and positrengitiesn. (p) the

Compton terms can be obtained by multiplying equation (6b84871:3p>.

5.5 Photon—photon pair production and pair anni-
hilation

The electron RKE accounting for pair production and anatioh processes can
be written as (Nagirner & Loskutov 1999)

. 22 (dep, d®xq d®x
pownp)=Gp [ SRS vp, - x -0,

X | Fon(X2)fpr(3) = (PR (P.)| (5.30)

where we used subscriptsto explicitly show the momenta and the occupation
number of electrons and positrons. Assuming homogenegyget

DA_(p.)
Dt

_ - 23
= —c o7 5a(P) Ny A(p) + Cor NG ?C joo(p),  (5.31)

coll,pp

where the pair annihilation cross-section (in unitegj is given by

3 2 1 (d¥:, d®¥;d3x
321 . —~ — (P F ~x,—%) (5.32
32t AN, y- Yi X1 X A (p.) 775(E_+E+ X=X ( )

gpa( p—) =

and the pair-production rate by

. 3( 2 V1 [dp,cdBxidx, ..
= = adx F “x —X).
Jpp(P-) 327T(/l?éNph) )/_f " Fiph(X) Mpn(X1) 775(E_+E+ X —X)
(5.33)
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The relativistically invariant reaction rate,, is (Berestetskii et al. 1982)

£, 4 1\ (1 1)
F 2242 - +—=|, 5.34
"Ta e (f fl) (H&) (534
whereé =p -x= Pox andé, =p -x; = =p, X

Assumlng again |sotrop|c particle dlstrlbutlons in fraBewve can write equa-
tion (5.33) as

2
1 00~ 00~
) o [ A ax [ ) € R - X %), (5.35)
XL X1L

p-) = 3n (|

AENpn
where we have defined

d®p,
2(4 @ny2” vs

The cross-section becomes

R, (y_, % %) = d’w d?w, F, 6(p + P, —X —X. (5.36)

Su(p.) = 4n f 02D, ey, v-) (D), (5.37)

AN,

where

31 1 d3x; d3x
O'pa(7+,7—):§(4ﬂ_)2y_y+f Xll—dZQ Fwé(p +Pp -X - X). (5.38)

The treatment of positrons is identical if we switch the suipts — and + in
equations (5.30)—(5.38).

The photon kinetic equation accounting for pair produgaonihilation pro-
cesses is

d3x; d3p_ dp,

[n_(p_)m(m = fion(Xa)fign(x) | (5.39)

Neglecting the spatial derivatives in the left hand sides, lecomes

3

Dﬁph(X) _ ~ /lC :
= —C o1 SHp(X) Nph fipn(X) + cor NC N, ) Jpa(X), (5.40)

Dt

coll,pp
where the pair-production cross-section is

_ 3 2 1 (dudp dp,
() = 168N _f =
C phX X1 Y- Y+

ph(Xl) Fyy 5(p + p - X - X) (5 41)
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and the emissivity due to pair annihilation

3 (2)2 1 1fd3x1d3p_d3p+ﬁ

i X)= — | — —
JpalX) 167 /lg N_N, X D A

-(PI)R(P)F,,6(p_+p =X —X).
(5.42)
Notice that unlike the electron equation, the photon equas nonlinear owing to

the fact that the cross-section (5.41) depends explicitlhe photon distribution.
Under the isotropy assumption equations (5.41) and (5m2ameE become

2V 1 1 [, ©
) APy [ A dr Ry xx0)
b

jpa(X) = 67 | — =
Jpa(X) ( 2) NN e
(5.43)

where we have to substitukg = y_ + y, — x from the energy conservation condi-
tion, and

Sp(X) = 47ri f X§dxq o pp(X, X1) Apn(Xa), (5.44)
/l?éNph 1/x
where
31 1 d*p_d®p, ,,
Tpp(X, X1) = G 5 w1 Fy, 6(p_+p —x —X. (5.45)

Explicit expressions for the raf®,, (y_, X, X1) (derived by Svensson 1982, see also
Boettcher & Schlickeiser 1997 and Nagirner & Loskutov 1988 the cross-
sectionsrpa(ys, ¥-), opp(X, X1) as well as the lower integration limits in equations
(5.35) and (5.43) were given in Chapter 2.

The pair-production terms in equations (5.5) and (5.6) takdgorm

Nphpp(X) —Capp(X) Npn(X) + €palX), (5.46)
hi,pp(pi) = —C Cl’pa(pi) n.(p.) + Epp(pi)' (5.47)

By comparing with equations (5.31) and (5.40) we find the gligmn codficients
and emissivities to be

app(X) = o1 Sp(X) Non, €a(X) = 4rcor NL N, x° jpa(¥),  (5.48)
@pa(P-) o1 Spa(Ps) N=, €pp(P:) = 4ncor NSh P2 jpp(Ps). (5.49)

5.6 Synchrotron radiation

The kinetic equations describing synchrotron radiatiogdte be written in frame

E, where we assume there is only tangled magnetic field (andectrie field).
Using the Einstein cd&cients and the cross-sections describing synchrotronemis
sion and absorption (Ghisellini & Svensson 1991), we foum@hapter 3 that the
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collision terms for these processes in the elegpositron and photon equations
take the form (see also Ochelkov et al. 1979):

e P(x, 7
= o[ anym TE ot -y
x {(pa) [1 + Fign(X)] = A (p) Fipn(¥)}
- [ ox [Canrp P sy -- 0
0 1

D
Dt [ypA.(p)]

coll,syn

X
x {71 (p) [1 + pn(x)] — (1) Apn(¥)} (5.50)
D . 0 Y P(x,
Et[xznph(x)] e fl dy fl dy1yp ())((Y) Sy -v1—-X%)
x {e(P)[L + fipn(X)] = Fie(P)pn(¥)} - (5.51)

HereP(x, y) is the angle-integrated cyclo-synchrotron spectrum ohgls elec-
tron, normalized to the electron cooling rate:

40—TUB 2
=z , 5.52
3 me P (5.52)

whereUg = B?/(8r) is the magnetic energy density. One can readily verify that
equations (5.50) conserve the total number of electronpasitions, and that the
total energy is conserved by equations (5.50) and (5.51).

Under the physical conditions that we are interested inattegage energy (or
momentum) of an emitted or absorbed photon is much lowertti@anergy (mo-
mentum) of the electron taking part in the process. The staihway is therefore
to treat synchrotron processes as continuous cooling dingefar electrons and
as an emission or absorption process for photons.

We write the photon terms in the form

f P(x7) dx = —¥s
0

~ 3
OIrOd| ¢ () o) + 2 & (5.53)

Dt coll,syn 8t x3

whereas and e are cyclo-synchrotron absorption and emissionfibcents, re-
spectively. In the kinetic equation (5.5) for the photon signn,,(x) the corre-
sponding term can be obtained by multiplying equation ()Stﬁ@ml(‘:?’x?’:

Nphsyn(X) = —Cas(X) Npn(X) + €5(X). (5.54)

The emissivityes gives the number of photons emitted per logarithmic dimen-
sionless energy intervalln x, per unit volume and time and can be identified by
comparing the corresponding terms in equations (5.51) 2ua®):

e =23 [Py PR dp= [P NP Np (559

C



5.6. SYNCHROTRON RADIATION 101

Similarly, by comparing the terms proportionalrig, we identify the absorption
codficient (e.g. Twiss 1958; Rybicki & Lightman 1979):

dfie(p)
C x2 dp

P(x,y) ypdp,

(5.56)
wherep; = +/(y — X)2 -1 is the electron momentum corresponding to energy
v1 =y — xand the second expression is obtained by expansion to therfiey in

as(X) =

f P [fe(p1) — Re(P)] P(X, y) =

4rcx3

X< y.
In terms of the electron number densityp) the absorption cd&cient takes
the form:
_Ac 1 [yPXY) |, e(p)

The synchrotron processes for electrons can be treatedwﬁsmws using the
Fokker-Planck equation. It can be obtained from equatiobO)semploying the
delta-function to take the integral over and expandingp; P(Xx, y1) andn.(p.)
nearp to the second order in the small ‘parameter’Collecting the terms and
finally integrating over the photon energyve get (see Chapter 3)

%[ypm(p)] _%[Ysyp A.(p) — H(p) yp +ip)] 209y 2[H (p) yph.(p)].
(5.58)
where
3
H(p) = fP(x,y) Apn(X) X dx = %fP(x,y) Npn(X) dIn x,
Ha(p) = [ POxy) xlx (5.59)

To get the total electron energy gaoss rate, one has to multiply equation (5.58)
by 871y dy and integrate. Multiplying equation (5.53) by.8&3x*dx and in-
tegrating gives the corresponding rate for photons. Uskmessions (5.52),
(5.55), (5.56) and (5.59), we can verify that energy coretéoa is maintained
when switching from equation (5.50) to the continuous apipnation (5.58).

The last term on the right-hand side of equation (5.58) spwads to diu-
sion due to spontaneous emission. However, as was discins€&apter 3, it is
expected to be negligible compared to the other terms in passs. Therefore,
we neglect the term withlg in our simulations. Thus, for the distributions(p),
equation (5.58) takes the form

on.(p) |
dlnp

hi,syn(p) = np [Aesyn( p)ni(p) - esyn(p) (5-60)

where
2

Aes(P) = (ys+ %H(p)) 2. BenP-HOL. 66
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Itis worth mentioning here that other emissiasorption processes, e.g. brems-
strahlung, can be implemented analogously to the syndmwo#&diation, once the
emissivity function of a single electrdA(x, y) (which now may depend on the
particle distribution) is specified.

5.7 Coulomb collisions

The RKE accounting for electron (positron) evolution du€tmulomb scatterings
is (see Chapter 4)

5(p +p- p — P') Feou

3 d3 3
P VAL(p) =12 Zfdpl by I

e yiovy v
X [Ae(P)N(P) — Re(p)N(P)] - (5.62)

The invariant reaction rate for Mgller scattering (iese” ande*e") is given by
(Berestetskii et al. 1982)

2
b, ¢ +1)+ 1- 46,

Fou = | =22 ke, 1 1
Coul (§—1+§1—1 E-DE-1)

and the scalar products of particles’ four-momenta are ddfasé = p- p’ and
sL=p - p’. As discussed by Baring (1987) and Coppi & Blandford (199623,
correspondlng rates for Bhableae™ scattering are nearly the same in the small-
angle scattering approximation, we therefore do not disiish between electrons
and positrons in these equations.

We saw in Chapter 4 that although the Coulomb process isstmiil in na-
ture, itis necessary to treat it in the Fokker-Planck frammwi.e. as a continuous
diffusive energy exchange mechanism. This is due to the welldkrivergent
nature of the Coulomb cross-section for small-angle seatie with negligible
energy exchange per event, while in the parameter regimeseniaterested in, a
large number of such scatterings dominates the energy gésrate of a parti-
cle over a much smaller number of large-angle scatterimggerms ofn. (p) the
Fokker-Planck equation (4.72) for isotropic particle digitions takes the form

+4 (5.63)

. on.
o) = = [Asca (D) - Becas o | (660
with codficients given by
) o (1yD 1v°D
AccoulP) = yc;;'y ay(zy p§°”'), Bacou(P) = 5% pf°”'. (5.65)

The energy exchange rate and thwdiion codficient can be obtained by calcu-
lating the first and second moments of equation (5.62) keepity small-angle
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scatterings and are expressed as integrals over the patisttibutions:

oo = [ rdnpIdinp  Doou(® = [ dovdndpydinp
(5.66)
The ratesa(y, y1) andd(y, y1) were given by equations (4.78) and (4.73) in Chap-
ter 4.
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Chapter 6

Numerical treatment

We numerically solve the set of coupled integréetiential equations of the gen-
eral form (5.7)—(5.8). We first define an equally spaced grithe logarithms of
particles’ momenta:

Np = NpmntG-1)Ap €[l in, (6.1)
INX = NXmn+(0-1)-Ay €[l . (6.2)

Writing all differentials and integrals on the finite grids, we get threeesyst(for
photons, electrons and positrons) of linear algebraictaopusof the general form

r]k+1

Z Mk+l/2 1 k+1 + n ) (63)

LI

whereAty is the size of thé-th (variable) timestep. Such semi-implicitigrenc-
ing scheme, where both sides of the equation are centeradestépk + 1/2, is
known as the Crank-Nicolson scheme (see e.g. Press et &).180 physics is
contained within the matri¥;;, which can be explicitly calculated at each step.
The systems of equations for all types of particles are sidvepwise, alternating
between equations and requiring a matrix inversion at esty. After solving a
set of equations for photons, the updated photon distahus used to calculate
matrix M for electron and positron equations. Then we solve for itistions of
electrongpositrons and substitute it to the photon equation and so on.

6.1 The Chang and Cooper scheme

The matrixM;;. of the linear system can be decomposed into two parts arising
from the diferential and integral terms in equations (5.7)—(5.8). Tiieckntial
part contributes a tridiagonal matrix, the form of the egquate.g. for electrons),
giving rise to it, is

nik+l — nik 1 [Fk+1/2 Fk+l/2] (6.4)

Atk - Ap i+1/2 i-1/2

105



106 CHAPTER 6. NUMERICAL TREATMENT

where the momentum space flux is given by

r]|<+1/2 r]|<+1/2
Fk+1/2 _ ak+1/2 nk+1/2 _ Bk+1/2 i+1 i
i+1/2 — Ai+1/2 i+1/2 i+1/2 Ap

(6.5)
The distribution function between time gridpoints is defireccording to the
Crank-Nicolson scheme as (omitting the momentum index)

1
k+1/2 _ = (Ak+1 k
n _2(n +n). (6.6)
We also have to somehow define the distribution function betwmomentum
gridpoints. Following Chang & Cooper (1970) we introduceasgmeters; so
that (now omitting the time index)

Nii12 = (1 - 6i)ni+1 + 0N, o€ [0, 1] (67)

The basic idea of the Chang and Cooper scheme is to emplopdhasneter to
ensure that the ffierencing scheme converges to the correct equilibriumisolut
independently of the size of the gridst&ép. Assuming that the momentum space
flux through the boundaries vanishes, the equilibrium saiuells us that it must
vanish everywhere, i.d= = 0. From equations (6.5) and (6.7) we then have

Nit1 _ 0i Ai+1/2 Ap + Bi+1/2 (6 8)
N Bz~ (1-6) A2 Ay .
while the exact solution gives (Chang & Cooper 1970)
it _ exp[A”l/zAp]. (6.9)
N i+1/2

We can see that using either centerefiiedencing § = 1/2) or forward diferenc-
ing 6 = 0, equations (6.8) and (6.9) agree only to the first ordekix,/B. To
make the correspondence exact, one has to equate the twmegquand solve for
i, to get

W L 17
w - expim) -1 I Bii12

Aside from converging to the correct equilibrium solutisnch choice ob; also
guarantees positive spectra, as shown by Chang & Cooped).18%khough this
method applies to purely fierential equations, we can still use it in our integro-
differential equations to ensure that th&etiential partends toward its own cor-
rect equilibrium solution, which would also be the correglusion for the full
equation in the region where thefidirential terms happen to dominate.

5i = Ap. (6.10)
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6.2 Treatment of Compton scattering

Accurate numerical treatment of Compton scattering oveida vange of energies
is not straightforward. This is caused by the well-knowrt fdxat at diferent
energies the process takes place iffiedent regimes. If the energy of a photon
in electron rest frame is much smaller than the electronaestgy, the process
takes place in the Thomson regime and the electron losesyaswaall amount
of its energy in one scattering. Correspondingly, there gharp peak in the
electron redistribution functioR. nearp = p;. We cannot therefore numerically
resolveRe on our finite grid and have to treat the energy loss proceSsdmaous.
On the other hand, for scattering in the Klein-Nishina regithe electron can
lose a significant amount of its energy in one scattering.hiNgsto include both
regimes, we need a way to switch from the continuous appratiam (implying a
differential equation) to direct calculation of scatteringtigh the integral terms.
Similar treatment is required for photons, although thetiomous approximation
is only needed in the regime where the photon energy is mughrlthan the
electron rest energy and the electron is non-relativistic.

6.2.1 Scattering of electrons: separation of regimes

Let us first look at the electron redistribution function2®). We wish to know
what is the lowest incoming photon enerngy(p,) that can cause a shift in electron
momentump, by |AIn p|. This energy is related to the lower limit (5.27) of the
integral in equation (5.25). If the shift is small enough, ve@& write

1 1
(P = X ) = 5 (il +p) = panpu(1x 2] (e)

where we have useddp = ydy. The plus sign applies when the electron gains
energy and the minus when it loses it. We see that for highggredectrons, the
minimum energy of photons for which we can resolve up- or dsmatiering is
vastly diferent. However, since the upscattering (energy incredselativis-
tic electrons is extremely ifigcient, we concern ourselves only with being able
to resolve their downscattering (i.e. cooling) and so ugentinus sign in equa-
tion (6.11). ChoosingA In p;| comparable to our grid step (we use somewhat
arbitrarily 3A,) in the electron equation, we then state that scatterindgestrens
on photons withx; < X; (p1) cannot be resolved.

We now split the redistribution function into two parts aatiog to whether
we can or cannot resolve it on our grid

Re(p, P1) = Ro(p, p1) + Ra(p, o), (6.12)

where for the first term the integral in equation (5.25) ietakverx; < x;(py),
and the second term is defined by integrating over the rengi To totally
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isolate scatterings that undergo on photons with energiesvand above, , we
have to write the extinction céigcient as an analogous sug(p) = 5 (p) +S(p),
where

SHOE %fﬁi(pb p) prchys , (6.13)

in accordance with equation (5.28). For the terms contgiﬁirand‘% inthe elec-

tron equation, we compute the integrals through the dis@eins, but the terms
containingﬁz ands; have to be accounted for by continuous energy exchange
terms in the equation. Since we also want to treat therntadizdoy Compton
scattering, these terms have to contain a second ordelatieeiof the electron
distribution (a dffusive term). Therefore, we take the standard form of the &okk
Planck equation

oanat) =5 {1eM0) - 35 DOINGN) (614)

while the exact equation for the) terms comes from equation (5.24), written
here forN.(y)

collcs(?’) = —Co1 5 (P) Npn N () + 4n corNpp pf Re(p’ P1) Ni(y1).

(6.15)
In order to make a physically sensible correspondence leetweese two repre-
sentations, we demand that the first three moments of eqsaiol4) and (6.15)
were identical. Substituting equation (6.13) to (6.15) w fi

fN;coll,cs(’y)’yid’y
= drcorNg, f dy f dy1y {—& R(pw IN.G) + = R(p. p) N+(m}
= arcoy [ay [ i (v =) Rolpa HYN)

~ corNgy f dy L) SO N.O). (6.16)

where similarly to the moments of the photon redistribufiomction (Nagirner &
Poutanen 1994), we defined the moments of the electron niédisbn function

7‘1‘s3(p)s% f by’ dys R (pr. p). (6.17)

The zeroth moment (giving zero in the right-hand side of e§.16]) is just a
statement of particle number conservation, while the firstmrant gives the total
rate at which the electrons gain (or lose) energy. The mosmdefined by equa-
tion (6.17) can be calculated analytically using the exdetrkNishina scattering
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cross-section. For photons this was shown by Nagirner &adart (1994), while
the extension of these calculations to the electrons isgivéppendix A.9.
The moments of the continuous approximation (6.14) are

f Neares)dy = O, (6.18)
f N dinesy) vy = f SN (7) dy, (6.19)
f KL gires() 2 dy = f 276+ D) Nu)dy.  (6.20)

Here we have assumed that the distribution funchig(y) vanishes at the bound-
aries of integration. Exact correspondence with equa6att) can be made if we
identify

¥e = CotNpn (y1 — %) (), De(y) = CorNon(y1 = ¥)?S(p),  (6.21)

while for the zeroth moment the correspondence is automnmEtiese moments can
be computed using equations (A.66) and (A.67) given in AppeA.9. Finally,
we write equation (6.14) through.(p) and in the form that can be included in the
Chang & Cooper dferencing scheme together with other terms

hi,diff,CS(p) = _8 |?] D [Aecs(p)ni(p) - Becs(p)aanli—rfz) > (6-22)
where
_ Yy 0 (1yDe(y) _ 1'}’2De('}’)
Aecs(P) = Z oy (E 02 ) Becs(P) = 5 o (6.23)

6.2.2 Scattering of photons and three-bin approximation

Insuficient resolution of numerical calculations can become smeislso for the
scattering of photons if the electron energies are low ehoégphoton will then
exchange very little energy with an electron upon scatesumd the redistribution
function is strongly peaked near= x;. To overcome this we propose the follow-
ing approach. We separate scatterings that take placengitinne narrow interval
around the energy of the incoming photon from those invokihgton energy
outside this interval. We then approximate the scatteriaisig place within the
central interval by a continuous process and account ferdpiditerential terms
calculated through the exact moments of the redistributiontion.

To keep the correspondence to the electron equation, wéteeilve photon
evolution equation (5.16) in terms dE(X):

Nohcolles(X) = 4mCor TNe{ f dxq [Nph(xl)xlﬁph(x, Xp) — Nph(x)%ﬁph(xl, X)]
¢ 1

+ f dxl[Nph(xl)X—Xlﬁph(x, xl)—Nph(x)X—Xleph(xl, x)]}, (6.24)
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where the extinction cdicient is expressed explicitly throug‘_kbh using equa-
tion (5.19). Herec stands for the intervalxgx, x¢”] and ¢ means integration
from O to oo excluding that interval. The width of the central regioa,(th log
units) is somewhat arbitrary, but should include at leastupte of bins, with our
choice being three, i.éy = 3A..

For the second integral in equation (6.24) we wish to writ@@tiouous ap-
proximation similar to equation (6.14)

o . 10
Nohifr.cs(X) = ~ox {Xc Npn(X) — > 9% [Dph(x) Nph(x)]} : (6.25)
Similarly to what was done for electrons, the ffagents in equation (6.25) are de-
termined from the requirement that the first three momentseftlfferential and
integral equations coincide. The moments of the 'centrait pf equation (6.24)
(denoted bye) are

Rl ) 0 . N Xy —
f; Nohconcs(¥) X dX = 47rCaTNefo dxfdxl (x'l - x') ;l Ron(X1, X) Non(X),
(6.26)
where the integration limits fox andx; in the first term were switched, because

for constantd, the area on thex(x;) plane is the same. The moments of the
differential equation are similar to what were obtained fortebes

fo NSh,diff,cs(X) dx = 0, (6.27)
L N;hdiff,cs(x) Xdx = ﬁ XC Nph(x) dX, (628)
fo NSnaircs() X0 dx = fo |2x% + Dpn(¥)| Non( dx.  (6.29)

Equations (6.26) and (6.27)—(6.29) give identical exposssfor the first three
moments of the "central’ part of the equation if we identify

) X1 —
X = 4n c(rTNefdxl (X1 — X) ;l Ron(X1. X),
Dph(X) =4drcotNe fdxl (Xl - X)2 %ﬁph(xl, X). (630)

The 0-th moment is identically zero for both equations (p&t6l (6.27), implying
particle conservation.

The integrals in equations (6.30) are computed numericalyfiner grid. At
low photon energies, the redistribution function can beovaer than the whole
integration interval, and integration can present a prabl this case, however,
we can extend the integration limits in equations (6.30nffdtoc and to calcu-
late the moments of the redistribution function analyticéNagirner & Poutanen
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1994). Using the limits oty,, given by equation (A.42) in Appendix A.6, one can
show that scattering takes place entirely within the céimtarval € for incident
photons and electrons satisfying the following relations:

X < 6—2" p<p,.(X= 6—2" - X (6.31)

We can write the moments of the redistribution function inaywimilar to equa-
tion (6.17):

Ui =< 4 i+ =)
X 5(X) = 7” f X dxy Ry (%, X), (6.32)

where the< superscript signifies that only electrons wgh< p; (x) are taken into
account. Equations (6.30) then (fok 64/2) become

Xe=CotNe (0 =X 5(¥).  Dpn(X) = corNe (1 = XS (x),  (6.33)

and can be computed using equations (A.60)—(A.61) in Appeh®.
For numerical dierencing equation (6.25) has to be written in the form

0
hphdiff,cs(x) = _(ﬂ%( [Aph,cs(x)nph(x) - Bphcs(x)an%(:) > (6-34)
where
X D D
Aol = 2= L (320) B -3 (639

6.3 Pair production and annihilation

The numerical treatment of pair production and annihifapoocesses in our code
is fairly straightforward. The only potential fiiculty can arise from the non-
linearity of the absorption term in the photon equation. @aldvith this we have
chosen the simplest possible approach: for calculatingp#ireproduction opac-
ity at each step we simply use the photon distribution froengfrevious step. The
error caused by doing so is not expected to be significant ist wases. It is
well-known that a photon of energywill most eficiently interact with photons
of energyx; ~ 3/x, thus if its energy is not very close to the elecfositron
rest energy, the photon will most likely annihilate on amothhoton of a vastly
different energy than its own. Therefore, we can visualize twarsge popula-
tions of photons that pair-produce on each other, with thiglaig energy am.c2.
The photon distribution from the previous step is then talebe the ’target’
population on which the photons that are being evolved paitlyxce.

Since we wish the numerical scheme to treat electrons ant@usidenti-
cally (particularly when we are dealing with pure pair pl@anwhile at each step
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one of them has to be evolved first when the outcome of the @tlyet unknown,
we use a fully implicit scheme for the pair annihilation term

The quantitieRR,, (y_, X, X1), opa(y+, y-) andopp(X, X1) defined by equations
(5.36), (5.38) and (5.45) are precalculated on a fine gridtheckafter averaged
within the electroypositron and photon bins used by the code. The integrals in
the expressions (5.35), (5.37), (5.43) and (5.44) for emiss and absorption
codficients are calculated through discrete sums.

6.4 Treatment of synchrotron processes

One of the main dficulties in numerically treating synchrotron processeim-<
pact sources is that the optical thickness of the medium dielf-absorption
might become extremely large at low energies compared yo,T$¥@mson opti-
cal thickness. Almost all photons that are produced are idiately absorbed,
so very few escape. But the energy which those few carry awaes from the
small net energy exchange rate between electrons and @hetbich we need to
keep track of to maintain the energy balance. Near the éguith, in the pho-
ton equation we have two large terms describing emissiorabadrption, which
nearly exactly cancel out. A small error in either of themduroes a significant
error in the total energy transfer rate. In the electron ggoahis transfer rate
is given by the dierence in the synchrotron cooling and heating rates. To-main
tain the energy balance between the two equations, we neststwe that in our
numerical scheme these rates are seen identically by battiegs.

In discretized form, the synchrotron processes for elesfpositrons are de-
scribed by equations (6.4)—(6.5), with= n., A = Agsyn andB = Bggyn. TO Obtain
the total energy gain we have to multiply equation (6.4)h%,, sum ovei and
sum the corresponding terms in the electron and positroatems. Assuming
vanishing boundary currents, we have

im—1

AEe _ nei+1 - nei
At AV = ; Avi12 [Ai+l/2 Nei+1/2 — Bi+l/2A—p , (6.36)

whereAyi, 12 = viz1 — vi and we have omitted the time indkx- 1/2 for brevity.
The exchange rate as seen by the photon equation can betedabyawriting the
integrals in emissivity and absorptivity expressions$»and (5.57) as sums over
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the grid, multiplying equation (5.54) by A, and summing ovelr.

Aty AV

[—CX| @) Npp | + X E|] Ay

/13 i nphl viP || N Nejir1 — Nej
I Ap
+ Z X AXZ ne,i I:)I,i Ap] s
1=1 i=1

whereP;; = P(X,vy;). Changing the order of summation, identifying the sum
over the photon distribution as the discretized versiorhefdefinitionH(p), and
noticing that}}, P, xAx gives the electron cooling rateys;, we get:

AEpn (s 3nHN L viHi e = e
AL AV T |

=1

(6.37)

To make equations (6.36) and (6.37) identical (except ferdign) we have to
make subtle changes in the definition of fiu@ents and the way integrals are
numerically calculated. In equation (6.37) we have to defimeecodficients in
between the electron momentum gridpointsj at1/2, substitute the electron
distributionng ; by ne i+1/2 (€Xcept in the derivative term), where the latter is cal-
culated using the same Chang & Cooperfioentss; as in the electron equation,
and sum up to = i, — 1 instead of,. This amounts to defining the emission and
absorption coféicients as

im—1

€ = Z Pliv1/2 Neiv1/2 Ap,
i=1
|m—1

'}’|+1/2 P Ji+1/2 [ Neji+1 — Ngj
Q) = 3nei+1/2 - —] Ap. (638)
87”(1 Z p|+1/2 Ap

Also, the codficientsA and B entering the momentum space flux (6.5) and thus
also the electron energy exchange rate (6.36) should beewas
( +3X H) and By = Ap (lH) (6.39)
i+ - . .

A7i+l/2 p2 i+1/2 A7i+l/2 p2 i+1/2
which become identical to (5.61) in the limi, — 0 and ensure that the energy
exchange rates as seen by the electron and photon equatdahe dame.

The only discrepancy left is that we cannot use the safff¢* andng™? in

both equations. This is because each of them contains adamét?, which, in
the equation that we evolve before, is not known for the alyye of particle. The
solution to this, at least in the average sense, is to reg@rtime-grids for each
equation as shifted by a half timestep. Tmért obtained from one equation can
be used ag**'/? in the other and vice versa.

Ai+1/2 =
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6.5 Coulomb collisions

Coulomb scattering only redistributes the energy betweéierdnt parts of the
lepton population. It is easy to see that the total energgmnserved in the sum of
two equations (5.64) for electrons and positrons, provitata(y, y1) is antisym-
metric, the latter simply reflects the energy conservatiawb-body interactions.
Similarly to synchrotron, our numerical treatment has teuga that the conserva-
tion is exact, otherwise unphysical runaways can occur tieaequilibrium.

The flux in momentum space in equation (6.4) for Coulomb edatj is given
by equation (6.5) with cd&cients expressed as (see eqg. (5.65))

S v e (2 W o | IS
T\ vz 2% [\ P )i \ PP L T2 2

(6.40)

The total energy exchange rate is identical to equatior6§6@ synchrotron.
Let us now look separately at terms contaimjngndD. Fory we have

im—1

A Neit1/2. 6.41
Atk AV Z '}’|+l/2( )|+1/2 ei+1/2 ( )

It is now easy to see that this quantity can be made to vanish rite

¥y A
: : P

Yier2 = ) A&(Yis1j2, Vis1/2) Netv12Ap - @Nd (—) = Yisyp—, (6.42)

" ; " : o P ? i+1/2 " A7i+l/2

provided thata is antisymmetric. The terms containiig(y) in the energy ex-
change rate are

AE, 1'% ([{yD vD D
At AVIp 2 i—1 {[( P? )i - p? J; letvyz * p i+1/2 (Meies = e
(6.43)
where we have redefined the ¢deentB as
1 Ap D
Bii12 — (7 ) . (6.44)
2A7u+1/2 p? i+1/2

One can see that equation (6.43) has the form of an integealofull differential
and, as such, should vanish provided thbat= 0 at the boundaries. To ensure
this numerically for any electron distribution we write é&eply nej,12 = (1 -
di)Nej+1 + 6iNeg; @and demand that the cibeient in front ofng; in equation (6.43) is
equal to zero for every Rearranging terms, we get

38 (i[R3R -(37) )

D D
- (7—2) + (7—2) } + nels_ + neims+. (645)
P Jivy2 \ P Jicap2

Aty AV
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The expression in the curly brackets is identically zeroefset

050 (F)
— =0|l=] +@-6|=]|, 6.46
( P? Jii1j2 P ( ) P> /i ( )
while the boundary termS~ andS* vanish if
(@) =0 and (@) =0. (6.47)
p 1 Y im

Using expressions (6.42) in the first term in ffa@ent A and equations (6.46)
and (6.47) in the definition (6.44), we ensure precise eneaggervation in the
numerical scheme.
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Chapter 7

Numerical tests

Our careful treatment of the micro-physical processes s#ke code applicable
over a wide range of parameter regimes. The current versioers 15 orders of
magnitude in photon energy (from 0to 10'° eV) and 8 orders of magnitude
in electron momentum, while there is no fundament#ldilty in extending this
range further, e.g. to TeV energies for application to higzBnergy conservation
is achieved to within 1% in the majority of cases. All the sad@éd cross-sections
of different processes have been precalculated once and for aramdad into
memory as the code initializes. A typical simulation for 2@ points in photon
energy and electron momentum on a 3 GHz PC running Linux takbseen a
few minutes and half an hour.

In order to test the performance of our code iff@tient parameter regimes,
we have chosen three setups from earlier works and run the watl similar
parameters for comparison.

7.1 Non-thermal pair model

As a first test we compare our code to the well-known pair ptasatesqrair by
Coppi (1992, 1999)kqrair also considers an uniform emission region into which
high-energy electrogairs are injected, mimicking an unspecified acceleration
mechanism. Some low-energy photons are also injected adéimyih source of ex-
ternal soft radiation (e.g. accretion disk). The high-ggerairs cool by Compton
scattering and Coulomb energy exchange with colder thepaies. The Comp-
ton upscattered photons can produce electron-positrog waich then upscatter
more photons etc., initiating a pair cascade. Once the paisdown to low
enough energies, the timescale of the systematic energgddsecomes longer
than that of difusive processes, leading to relaxation into a low-energyntil
distribution. Inegrar, Coulomb collisions between particles are assumed to be the
thermalizing mechanism. However, the thermalization @ssds not treated en-
tirely consistently in this code in a sense that there ewishg one thermal bin into
which patrticles are put once they have cooled below a cettt@@shold energy,
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Figure 7.1: Equilibriumd) photon spectra and) electron distributions (Thom-
son optical depth per Ip, i.e. ng(p)otR) for various stochastic heating compact-
nessesy, as labeled. The size of the emission regioiRis= 10** cm, the soft
input radiation has a compactnéss: 10 and a blackbody temperatufgs = 15
eV, the injection compactnesslig, = 10. The thin solid line on the right panel
shows a Maxwellian fit of temperatuie = 53 keV. Compare to Figure 1 in Coppi
(1999).

chosen to be = 1.3. The electron temperature associated with this thermasbi
nevertheless calculated self-consistently from energetnsiderations. Further-
more, the code does not consider thermalization by synaratelf-absorption,
which can be anfécient mechanism if the medium is magnetized (Ghisellinl.et a
1988, 1998).

The setup of this test run is similar to what was used for Faguin Coppi
(1999). We switched fd synchrotron processes in our code and left other pro-
cesses. We inject a Gaussian distribution of pairs centatrgg = 10° and a
low-energy blackbody distribution of photons. In addititimere is a background
electron plasma present with optical depgh= 0.1. There is no escape term for
pairs, meaning that all injected pairs eventually anniditeansferring their energy
to the radiation field. The power injected as non-thermaispgaiparametrized by
compactness

ot Lt

mc R’

Inth = (71)
where Ly, is the injected luminosity (including rest mass) aRds the linear
dimension of the emission region. Similarly, we define thempactness of the
injected soft radiation as

oT Ls

lS: @ﬁ, (72)
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whereLs is the relevant luminosity. To mimic acceleration with léisan 100%
efficiency, additional power is supplied to low-energy eletsran the form of
continuous heating, parametrized ky In Coppi (1999) this energy was just
given to the thermal bin, but since we do not have such binrcode, we need to
explicitly specify the form of this heating. This is done ligchastic acceleration
prescription of the form

Di..(p)
Dt

19
stoch B pzap

(7.3)

[pzDacc(p)aﬁi(p)] :

Jp

The momentum diusion codicient is assumed to take the form characteristic of
stochastic acceleration by resonant interactions withrptawaves (Dermer et al.
1996),D.{p) « p9. We have choseq = 2 in our calculations. The mean energy
gain rate of a particle resulting from equation (7.3) is

dy
(&)
wherep = p/vy is the particle speed. We can see that for a power-ldiugion
codficient the gain rate is proportional 9! in the relativistic regime, while in
the nonrelativistic regime it is proportional fi§. Our choiceq = 2 means that at
high energies Compton losses always overcome gains byasttickacceleration,
the main &ect of the latter process is therefore the heating of lowggnpairs.
The diferential term given by equation (7.3) is included in the QGh&n
Cooper scheme on the same grounds with other continuous.tdinerefore be-

fore discretization it has to be written in the form compliwith equations (6.4)
and (6.5):

190
T ap |B0°Dacd D) (7.4)

___ 9
stoch (9|n p

_on.(p)
dlnp

Dn.(p)
Dt

{Dacc(mé [3n+(p)

}. (7.5)

The results of the test are shown in Figure 7.1. Varying thewarhof stochas-
tic heating [,) keeping all other parameters constant, we see that we dhrewe
produce the behavior of the spectrum in Figure 1 in Coppi9).98ust as expected
by Coppi (1999), the equilibrium electron distribution igbinid: Maxwellian at
low energies with a nonthermal high-energy tail. Note thaet such shape even
if we switch df Coulomb scattering. The thermal-looking distributionieguced
by the stochastic heating itself, which gives a Maxwellilops at low energies
irrespective of the shape @f,.{p), while the location of the peak of the distri-
bution is determined by the balance between heating and ©@ongpoling. The
behavior of the spectrum in response to varying the powetaahsistic heating
seen in Figure 7.1(a) was analyzed in detail by Coppi (1988)are not going to
repeat it here.
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7.2 Thermalization by synchrotron self-absorption

For the second test, we compared our results with these sidihi et al. (1998)
They studied electron thermalization by synchrotron abBerption in the pres-
ence of Compton cooling. The electron cooling, heating aifithiglon due to
the synchrotron were described by equation (5.58) (wittio&iiast term), while
Compton scattering was assumed to take place in the Thomegone and con-
tribute only to systematic cooling. Furthermore, the et was not fully self-
consistent since only the electron equation was actualedoWhile the equilib-
rium synchrotron spectrum was self-consistently caledl@t each timestep from
the formal solution of the radiative transfer equation, @@mptonized spectrum
was not. Thus only the synchrotron spectrum entered thé&retebeating rate by
self-absorption, while the radiation energy density ndeédeccount for Compton
cooling was estimated from energetic considerations.

We ran our code with the same parameters used to obtain thesnesFigures
1 and 2 in Ghisellini et al. (1998). The pair producfi@mihilation and Coulomb
scattering have been switchefil for this test. High-energy electrons are injected
into the emission region, with the total power (includingtrenass) parametrized
by the injection compactnegg,. The magnetic compactness is defined by

oT
lB = @RUB, (76)
whereUg is the magnetic energy density. In addition there is an aatesource
of soft blackbody photons assumed to arise from reproogdsatf of the hard
radiation by cold matter in the vicinity of the emission i@gi The electron escape
timescale is fixed ats. = R/C.

In the first case the injected electrons have a Gaussianbdistn peaking
aty = 10. The evolution of this distribution is followed in time @scools and
thermalizes by Compton and synchrotron processes. We eatihaeour results
shown in Figure 7.2 are almost identical to those presemiédgure 1 in Ghis-
ellini et al. (1998). However, we would like to stress that algo compute self-
consistently the photon spectrum. We see the partiallyadedbrbed synchrotron
bump at small energies, then the blackbody photons and twgp@m scattering
orders at higher energies.

In the second case we calculated the steady-state painstigdtions for dif-
ferent injection compactnesses. The injected electramilalision (per unit Inp)
is

Yc
wherey. = 3.33. The resulting equilibrium electron distributions péat in Fig-
ure 7.3(b) are again very similar to the ones obtained by &lhiset al. (1998)
in their Figure 2. The corresponding radiation spectra showFigure 7.3(a)
are computed self-consistently and simultaneously wighetlectron distribution

3
Qe = Qo % eXp(—l), (7.7)
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Figure 7.2: Evolving &) photon spectra and) electron distributionst(p) =
orRne(p)/p) for Gaussian electron injection under action of Comptod syn-
chrotron processes atftérent times (irkR/c units) as labeled. The source size is
R = 10" cm, the magnetic compactnessgs= 10 and the injection compactness
Inth = 1. Compare to Figure 1 in Ghisellini et al. (1998).
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(while the spectra in Figure 4 of Ghisellini et al. (1998) ea¢éculated a posteriori,
i.e. after the equilibrium electron distribution has beetedmined). As discussed
in Ghisellini et al. (1998), if the source is strongly magoaily dominated, the
equilibrium distribution is almost purely Maxwellian. Whé¢he injection com-
pactness increases, Compton losses become non-negégibtbe electrons cool
down to lower energies before they have time to thermalizeticd that at the
highest compactnesk,{ = 100) the temperature of the Maxwellian part of the
distribution inferred from Figure 7.3(b) deviates appabty from the one ob-
tained by Ghisellini et al. (1998). This is caused by the taat at high compact-
ness a significant fraction of the soft radiation is Comptpsoattered to energies
comparable to the energies of the Maxwellian electronssé&lpdotons are there-
fore not dfective in cooling the electrons any further. However, ingéHini et al.
(1998) Compton cooling is accounted for through a term pribgaal to the radi-
ation energy density, which includes all photons, and floeesoverestimates the
cooling rate. Overall, the simple prescription for Comptaoling without actu-
ally solving the photon equation appears to work well in theameter regimes
considered here.

7.3 Gamma-ray bursts from stochastically
heated pairs

Finally, we compare our code to the Large Particle Monte €Cedde by Stern
et al. (1995a), with all the processes operating now. Thepgstsimilar to the one
used in Stern & Poutanen (2004) for simulating the spect@lgion of gamma-
ray bursts. They consider an initially optically thin dibtrtion of electrons in
a cylinder-shaped emission region. Arguing that impulsirgt-order Fermi ac-
celeration would result in cooling spectra that are too sofbe consistent with
observations, energy is instead supplied to the electromsnziously, mimicking
dissipation by plasma instabilities behind the shock fréstelectrons are heated
to relativistic energies in the prescribed background retigfield, they emit syn-
chrotron radiation, providing seed photons for Comptorcafisring. The high-
energy upscattered photons then initiate pair-production

In our simulation we consider a spherical region permeayemhégnetic field
and start by heating a cold electron distribution (withiatiffhomson optical
depthry = 6 x 10%) according to the stochastic acceleration prescriptioB)(7
No pair escape is allowed. The results of simulations arevsha Figure 7.4
and can be compared to a similar Figure 2 in Stern & Poutan@d¥{(2 In both
cases the electrons are rapidly heated to alout 100, as determined by the
balance between stochastic heating and synchrotron godls the photon field
builds up, additional cooling by Compton scattering caubeslectron 'temper-
ature’ to start dropping. After about3lof the light crossing time, the number of
photons upscattered to the MeV range becomes large enowggartsignificant
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Figure 7.4: Evolving4) photon spectra anty Thomson optical depth per fmfor
stochastically heated pairs atferent times (in unit®/c) as labeled. Parameters:
the source siz® = 10* cm, the magnetic compactndgs= 0.3, the stochastic
heating compactnesg = 30, the initial Thomson optical depth of electrons is
7o = 6 x 10, Fort = 0.1,0.3 we also plot positrons, at later times only the
electrons as their opacities are nearly identical. ComfmaFegure 2 in Stern &
Poutanen (2004).

pair-production. With the increasing pair density {at 1, opacity has grown
by a factor of 20) the available energy per particle decigasausing a further
drop in the temperature of the now almost pure pair plasmigraAbout ten light-
crossing times the Thomson opacityris= 1.3 and the pair density reaches the
value where the pair annihilation and creation rates aloald and a steady state
is attained.

The spectral behavior seen in Figure 7.4(a) is similar totwi@s obtained by
Stern & Poutanen (2004). The synchrotron peak rises firgighaitially in the
optically thin regime and thus following the evolution oktpeak of the electron
distribution according ta o y?. The first Compton scattering order lags slightly
behind synchrotron, while the second scattering ordeitigily in Klein-Nishina
regime and thus hardly visible at all. As the electron terapee drops and the
peak of the first scattering order evolves to lower energiessecond order shifts
to the Thomson regime and becomes comparable to and evgmtoadinant over
the first order. At the same time the decreasing temperahdengreasing pair
opacity causes the synchrotron emission to switch to dptitdack regime and
the synchrotron luminosity to drop dramatically. The plasbecomes photon
starved and the Comptonized spectrum hardens.
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Chapter 8

Gamma-ray bursts from
neutron-loaded flows

Gamma-ray bursts (GRB) are short-lived and extremely pimlvevents associ-
ated with the birth of a compact object that undergoes a epe&fode of hyper-
accretion and is capable of launching ultra-relativistis] If such jet happens to
point towards the observer, an intense flash of soft gamymissseen, followed
by longer-lasting emission at longer wavelengths (thergiftbev).

Apart from the jet launching itself, one of the primary quess in GRB sci-
ence concerns the way the energy deposited into the flow bgethieal engine is
converted into observable radiation. When the jet is laadcits internal energy
strongly dominates over its rest mass energy, which allbwesaccelerate to rel-
ativistic velocities. If the magnetic field is not dynamigalominant, this energy
is in the form of radiation. It is generally assumed that inlsaase most of the
radiation energy is converted to the bulk kinetic energyhefautflow before the
latter becomes optically thin and allows the radiation wage. The question then
is how to recover this energy to produce the observed namaddeemission.

One way of converting ordered bulk motion to random (thejmadtions is
through shocks, which take place when the flow encountevgesimoving mate-
rial. This can occur within the flow itself when a faster-muyshell catches up a
slower one (so-called internal shocks) or when the ejectaghl into the interstel-
lar medium (external shocks) (for a review, see Piran 2004¢.former is usually
thought to be responsible for the prompt emission and therledr the afterglow.
Significant advances have recently been made in simuldtsdynamics of rela-
tivistic shocks. The latest ab initio particle-in-cell (Jlsimulations now begin to
provide answers to long-standing questions like the natijyarticle acceleration,
generation of the magnetic field, energy exchange betweetrehs and ions etc.
(Spitkovsky 2008a,b).

In spite of these developments, the internal shock modekfaeveral diicul-
ties in trying to explain prompt GRB emission. First is thdlvkmown eficiency
problem: since bulk of the GRB energy appears to be releasbe prompt phase
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(as opposed to the afterglow), a significant fraction of toe fkinetic energy has
to be dissipated at this stage. This however requires a lagation of shell
Lorentz factors (Beloborodov 2000; Kobayashi & Sari 200Ahother problem
concerns the spectra produced in such shocks. It is coovetiy assumed that
the timescales associated with plasma processes resjgdiosiparticle energiza-
tion near the shock front are significantly shorter than itmes$cales for radiative
losses. It would therefore seem natural to visualize iriategous injection of
high-energy patrticles into the emission region. Howevas approach leads to
the problem that the produced spectra (so-called cooliegtemF, o v~1/2) will
be too soft to account for the majority of GRB spectral hasdes (Preece et al.
2000). Alternatively, hard spectra could be produced ifdleetrons emit in the
slow cooling regime (Panaitescu & Mészaros 2000) whickéver, leads to very
low radiative dficiency. As another alternative the energy could be shareshgm
a large number of particles and doled out continuously tihout the lifetime
of the source. Depending on the optical depth, hard speotrl ¢hen be pro-
duced by quasi-thermal Comptonization (Ghisellini & C&l@®99; Stern 1999)
or the synchrotron self-Compton mechanism (Stern & Poum&®®4; Vurm &
Poutanen 2009; see also Section 7.3 in the previous chapter)

Problems with spectral hardnesses as wellfasiency can be alleviated by
invoking a contribution from an additional thermal radisticomponent to the
observed spectrum (Mészaros & Rees 2000b; Daigne & Modtdtn2002). In-
deed, such component is a natural ingredient since at thee dfathe flow the
radiation is in thermal equilibrium with matter, in weaklyagnetized outflows it
also initially carries most of the energy. Although in thejondy of cases most
of this energy is converted to the kinetic energy of the owtflsome fraction is
always left in the radiation field and can be released at tégsiphere. Such ther-
mal spectral components have been identified in severalsee e.g. Ghirlanda
et al. 2003; Ryde 2004, 2005). The inclusion of a photosptmymponent has
two significant advantages: it can accommodate the obséaetislopes below
the spectral peak, and it can alleviate tffieceency problem encountered in inter-
nal shock models. Furthermore, it can be shown that in cagméicant fraction
of the flow energy is released as photospheric emissionpenarsim will peak at
~ 1 MeV in the observer frame and is a weak function of the outflowinosity.

If the peak of the gamma-ray spectrum is attributed to theqdmpiheric compo-
nent, this provides a natural explanation to the observestaling of GRB peak
energies (Preece et al. 2000).

Despite these advantages, it is obvious that the photaspraission alone is
not capable of explaining the prompt GRB emission. The neasthat being a
blackbody, it cuts f§ exponentially above the peak, which is clearly not what is
observed in GRB-s whose spectra extend to enekgies Epe. This extended
high-energy emission requires additional dissipatiomke tplace in the flow. Ex-
amples of dissipation mechanisms considered in the lis¥dh the context of
photospheric models include the aforementioned inteimadlss (e.g. Pe’er et al.
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2006) and dissipation of magnetic energy (Giannios 2008).

An alternative mechanism of flow enery dissipation was réggmoposed by
Beloborodov (2010) which does not rely on internal shockgherpoorly under-
stood magnetic dissipation mechanisms. It was argued iobBebdov (2003b)
that when the outflow is launched from the central compactaibjt necessarily
contains a significant neutron component. If the flow ha&@ently low baryon
loading, the protons decouple from neutrons before theegthes its terminal
Lorentz factor (Derishev et al. 1999b). This happens intf@sget accelerated to
I' > 400 and leads to the formation ofcampound flow: a slower neutron com-
ponent embedded in a faster proton flow. It was shown in Betwdny (2010)
that nuclear collisions in such compound flows constitutefaoient mechanism
of dissipating the flow energy, capable of reaching a sizhl&ion of the total
flow luminosity. This occurs through two main branches: (Blastic collisions
between neutrons and protons can result in pion produatibich upon decay ul-
timately leads to the injection of high-energy electrorsifron pairs with Lorentz
factory ~ 300, and (2) elastic collisions heat the proton componenrglativis-
tic temperatures leading to continuous Coulomb heatinh@felectroypositron
component, which is kept at a much lower temperature by Comgaoling. The
energy dissipated by these branches turns out to be aboait ddne main advan-
tage of this mechanism lies in the fact that it relies only @ilaunderstood colli-
sional processes, which greatly contributes to the predigiower of the model.
This is in contrast with collisionless mechanisms such aglslacceleration and
magnetic dissipation, which involve collective plasmamttions and are much
less understood.

Regardless of the dissipation mechanism, accurate mgdefithe spectral
formation in the flow requires a self-consistent solutiontfee evolution of parti-
cle and photon distributions in the dissipation region,clhgan span several or-
ders of magnitude in radii from the central source. Two baproaches are avail-
able: Monte-Carlo methods (used in e.g. Stern & Poutaned;2B8loborodov
2010) in which a sample of interacting partiglg@sotons is followed along the
flow, and kinetic treatment where a set of coupled time-ddpetintegro-dierential
equations is solved for photon and particle distributiarse¢l in e.g. Pe’er et al.
2006). We will take the kinetic theory approach and will cééte the emission
from both non-magnetized and magnetized neutron-loaded flo

This chapter is organized as follows: In section 8.1 we wileg summary of
the physics of relativistic hydrodynamical outflows whére imagnetic field is not
strong enough to influence the flow dynamics. The model forggraissipation as
well as the simulation setup are described in section 8.8ed¢tion 8.3 we present
the results of numerical modeling of non-magnetized andnatiged flows. We
will summarize in section 8.4.
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8.1 Relativistic fireballs

When the outflow is launched from the central object, itsrimaéenergy must
strongly dominate over its rest mass energy in order to ailsevacceleration to
relativistic velocities. If the magnetic field is not stroagough to influence the
dynamics of the flow, this internal energy is in the form ofietidn, which is
strongly coupled to matter due to the huge optical depthalwed. Matter and ra-
diation therefore behave like a single fluid, allowing thevflaroperties to be de-
termined from fluid-dynamical considerations (see e.g.dBoan 1986; Paczyn-
ski 1986; Piran et al. 1993). This regime extends out to tHeisawhere the flow
becomes optically thin and radiation decouples from matter

To lay the groundwork for our simulations we will thereforars with an
overview of the hydrodynamics of relativistic sphericatftaws and derive the
scaling laws for comoving energy and number densities. dasbe done most
elegantly by employing the covariant tensor formalism anding down con-
servation laws for the energy-momentum tensor that is vekspective of our
choice of coordinate system. In what follows we assume ti@titagnetic field,
if present, is not strong enough to significantly influeneediinamics of the flow.

Consider a fluid element moving with a four-velodily in some freely chosen
frame of reference. Its energy-momentum tensor takes tine (@/einberg 1973)

T = pg” + (p+ p) UFU’, (8.1)

wherep andp are the pressure and total energy density (including themass)
of matter and radiatiomnn the comoving frame of the fluid element andy” is
the metric tensor. We adopt a convention where the indice$raim O to 3 and
0 refers to the temporal coordinate. The energy-momentumsotesatisfies the
conservation law (for proof see Weinberg 1973)

DT* _ oT™
Dxr ~ oxv

+ I, TV + 10, T* =0, (8.2)

whereD/Dx” denotes covariant fierentiation with respect to the space-time co-
ordinatex” and the Christfiel symbols are defined as

o _
FJV_

1 agva 891(1 ag/lv
— O —
29 (axﬂ "% axa)' (83)

In other words, equation (8.2) states that the covariamrdence off *” vanishes.
We can also write down the covariant form of the continuityatpn,

D
Dx~

0
(nU”) = P (nU”) + T, nU* =0, (8.4)

wheren is the comoving particle number density.
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By noting that (Weinberg 1973)

r-=-2 5 8.5)

v \/Q OxA

where
g = -Detg,, (8.6)

we can cast the conservation laws given by equations (8@2j&#) in a simpler
form

DT §3% v _
= \/_BXV(\/_T )+ T TV =0, (8.7)
° (U = nu) = 8.8

Equations (8.7) and (8.8) are the fundamental equationsrgog the evolu-
tion of relativistic non-dissipative hydrodynamic flowsknepresent the conserva-
tion of energy, momentum and particle (in our case baryomber. In this form
they are valid in any coordinate system, rectilinear or dwear, and as such,
are able to accommodate theets of curved space-time and thus also General
Relativity. We, however, are interested only in speciatieistic efects in flat
spacetime. The reason for employing such general formdiksnin our desire to
determine the relativistically correct scaling laws in aepcally symmetric out-
flow for which we need to write the conservation laws in a dimear (spherical)
coordinate system.

Using the usual transformation between the spherical amte§ian coordi-
nates,

ct =ct,

X = I Sin@ cosy,

y =rsingsing,

Z=rCosb, (8.9)

we find the covariant metric tensor to be

-1 0 O 0
ox® Ox8 0O 1 0O 0
gpv=wmﬂaﬁ= 0 0 r2 0 ) (8.10)
0 0 0 r2sirfe
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wherex'* refers to the coordinates, r, 6 and¢, ands,, is the Minkowski tensor.
In contravariant components the metric becomes

-1 0 O 0
, |0 1 0 0
g” = 0 0 Ur2 0 (8.11)
0 0 O Yr?sirfe

In spherical symmetry the four-velocity of the outflowdé = I'(1, 3, 0, 0), where
B is the radial outflow speed in units ofandI is the Lorentz factor. Using this
and the contravariant components of the metric tensor diygB.11), the energy-
momentum tensor (8.1) becomes

_p+(p+p)_rz (p+p)l“2,§_2 0 0
S (p+g)r2,8 p+(p Bp)Fzﬁ 0 0 (8.12)
p/r 0
0 0 0 p/risirfe

In order to write out the dynamical equations, we need taxtale the Christof-
fel symbols. The only relevant non-zero components turnambe

I3,=-r,  T3;=-rsifd and T3 =-sindcosd. (8.13)

As one would expect in spherical symmetry, thand¢ (u = 2,3) components
of the conservation law (8.7) yield trivial results and tlmositain no information
about the dynamical evolution. The temporal and radial comepts give

9 2, L9 o5 _ 9P _
|+ T2+ S [r%(p+ ) IB| - — =0, (8.14)
0 ~1 107, =2 0p
[+ TP+ S|P +aTH |+ =0, (815)
while the continuity equation reads
0 10 —
ﬁ (nr) + EE (ran,B) = 0, (816)

where we have usegl= -Detg,, = r*sin’ 6.

To make further progress, we make the assumption that thei$ldighly
relativistic and each fluid element propagates (nearly@lcharacteristic world
lines described byt — r = const. Therefore it is natural to make a change of
variablesr,t — r,s= ct — r (Piran et al. 1993). The derivatives with respecttto
andr become
0 a 0

and — (8.17)

LR Lo 2
cot or or 0s

s
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where now the derivative has to be taken at constarfalong the characteristic).
The conservation laws (8.14)-(8.16) take the form

912 2z .9 r|,or

S [P+ ) T8 = as[(“f))”rg]*as’ (8.18)
107, =2l 0 B dp _dp

o |Pp )T | - 6Sl(p+p)—r+rﬁl+as T (819
19, = __0( n

29 (nrf) - 05(r+rﬁ)' (8.20)

If I' > 1 and the flow is not strongly variable, the terms under tffeintials on
the left hand sides of the equations (8.18)—(8.20) are maigjet than those on
the right-hand sides. Therefore we can immediately segftbdbllowing scalings
hold for each fluid element along its trajectory:

r’nl = constant and r?(p + p) I'? = constant (8.21)

corresponding to number and momentum conservation, regpigc

Under the assumptions we have made, equations (8.18) atf2) &em re-
dundant. To see that this is not true and that equations)§8.20) yield another
scaling law for internal energy, let us go back to the origc@nservation law
(8.2) for the energy-momentum tensor (8.1) and contracitit W,:

DTH Dp D DU*
— ) _ 4 U .y —

where we have used the fact that the covariant divergenceeoimietric tensor
vanishes and thai,U* = —1. The last term in equation (8.22) vanishes owing to
the fact that

U

0, (8.22)

DU* 1D
“Dx  2Dx
At this point it is convenient to separate the contributitlg+ p from the rest
mass of the matter and the internal energy:

(Uu¥)=o0. (8.23)

P+p = P+ pxin + MCN, (8.24)

wherepyi, refers to the sum of the comoving internal kinetic energysttess of
matter and radiation, and the bulk of the rest energy is asdumbe carried by
baryons. Inserting (8.24) into equation (8.22) and usimgdbntinuity equation
(8.8), we immediately see that the term contaiminginishes and we get

DT~ ,op 1 0 . ,
“Dx’  C 9x r2sing ax’ [rz sing U (p+pkin)] =0, (8.25)

wherex* now refer toct, r, # and¢ and we have used equations (8.5) and (8.6) to
explicitly write the covariant divergence in spherical odioates.
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To go further we have to specify the equation of state of thiel.flun the
typical GRB outflows that we are interested in, by far moshefinternal energy
is carried by radiation (this statement can be checked apost i.e. after we
have determined all the scaling laws). We therefore hmawep,i,/3 and equation
(8.25) becomes

v apkin 4 19 21 1v) —
U X’ + épkin ﬁ % (r U ) = O, (826)

which can also be written as
—(rPpga ") =0. (8.27)

Note that by cancelling sihin equation (8.26) we have already implicitly as-
sumed that the poloidal componentdf vanishes. Making the transformation
r,ctc - r,s = ct —r, the energy equation (8.27) for a radial outflow becomes
(Piran et al. 1993)

1
r2

|

(o3 1) = _9 [ pun_ (8.28)
“ os\r+18) '

ﬂ
D>

r

As before, we argue that the term under th@edential is significantly larger on
the left-hand side than that on the right-hand siddfes 1, and we find that the
following scaling holds for the internal energy:

r?pol*T = constant (8.29)
Looking at the scalings (8.21) and (8.29) we can identify tigtinct regimes.
If the comoving radiation energy density exceeds the resiggrdensity of matter,
the flow is in the radiation-dominated regime and the scallmgcome

Cor, Nnors, Pkin o< T4, (8.30)

while in the opposite case we are in the matter-dominatedgpaad the scalings
read

C=const Nocr 2 pnocr®3 (8.31)

We will use these scaling laws to determine the initial ctods at the start of
our simulations, as well as for determining the additioraihis in the kinetic
equations that need to be included to account for the enesggs$ due to adiabatic
cooling and the decrease of comoving densities in a divgrgirtflow.
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8.2 Physical model and simulation setup

The simulations are set up using the following simple pietua neutron-loaded
fireball is launched from the central source and is acceldra ultrarelativistic
velocities at the expense of its internal energy. As the floeekerates and ex-
pands, its rest mass energy eventually becomes compacabieltthen exceeds
the internal energy of the fireball, the flow enters a mattenihated regime and
thereafter coasts with a constant Lorentz fadtorAt some radius,, (to be de-
termined below) the proton and neutron components of the dle@ouple from
each other, allowing a compound flow to develop (Belobora2@i0): a slower
neutron component inside a faster proton flow. The kinetergyof the relative
motion of the two flows can then be dissipated through elastitinelastic nuclear
collisions. The dissipation is assumed to begin,att which point the simula-
tion is started. The simulation is run in the frame comovinthwhe outflow. We
choose and follow a 'representative’ element of the flowf;sehsistently solving
the time-dependent kinetic equations for particles andgisinside this element
as it propagates outward along its characteristic word-liThe included physi-
cal processes are Compton scattering, cyclo-synchroimisseon and absorption,
photon-photon pair production and annihilation and Codlamllisions. No ap-
proximations have been made regarding the relevant ratesrass-sections.

Since we are working with a one-zone kinetic code, the treatns essen-
tially local. Such simplified approach can be justified byimgthat the collisional
mechanism described above operates relatively close tcethiteal source, in the
rangeRgiss ~ 10 — 10" cm, while for typical burst durationat the radiation
remains embedded in the flow out to radihtI> ~ 10'® cm. This implies that
the flow and radiation are essentially moving together thhawit the dissipation
episode, therefore radius and time can be viewed as equivatéependent vari-
ables for describing the problem. It also means that pastadrthe flow emitted
earlier are causally disconnected from those emitted. |aiéerefore radiative
transfer can be regarded as the evolution of the local pHetehin the comoving
time. Other elements of the flow are expected to undergo tne gxolution as a
function of their own comoving lifetimes.

The assumption of isotropy of the material and photon fieideié comoving
frame (inherent in one-zone treatment) is strictly juddifo@ly as long as the flow
remains optically thick. After transition to the opticatlyin regime, the radiation
gradually becomes collimated along the radial directidmsTs a geometricféect
associated with the fact that most of the photons origirai@ fclose to the pho-
tosphere, which subtends a decreasing angle when viewedificreasing radii.
Although this presents a problem to our simulations, we gdlyedo not have to
follow the flow to very large radii, owing to the fact that theerging spectrum is
shaped predominantly close to the photosphere where thatidevrom isotropy
in the comoving frame is not large.

To set up the simulations we will proceed as follows:
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(1) Since we are simulating diverging outflows, the code aeaedye able to han-
dle expansion relatedfects such as adiabatic cooling. The additional terms that
have to be included in the kinetic equations will be detesdim the following
subsection.

(2) We will then determine the rates at which energy is deggig in the flow
through heating and injection, using a physical model tkxtain Beloborodov
(2010).

(3) The initial conditions at the start of the simulationg @etermined in the
framework of the fireball model described above, using tteirsg laws (8.30)
and (8.31).

(4) Finally, we will describe a simple method to account toe fact that at any
given moment the observer will see a superposition of eomssiiginating from
different parts of the flow that propagate at various angles tdirieeof sight,
resulting in ditferent Doppler shifts and opacities alon¢felient rays.

8.2.1 Implementation of expansion ffects

The fluid dynamical treatment described in section (8.1)death integrated
guantities such as energy density, energy flux and pressunehermore, it as-
sumes that all the components making up the flow are strorgglpled to each
other so that matter and radiation behave like a single fluib¢al thermody-
namical equilibrium. In contrast, we are interested indistributions of particles
and photons in energy space, which do not need to take the stagguilibrium
distributions (i.e. Maxwellian and Plan@ose-Einstein). Also, the spectrum that
the observer will see is predominantly shaped close to tlstogphere® ~ 1),
where, by definition, matter and radiation start to decot@igsn each other. In
fact, energy dissipation such as the collisional heatingweediscussing here can
force matter and radiation out equilibrium already at muigfér optical depths
than unity. Therefore, the question we need to answer is bamplement the
effects like adiabatic losses and dilution of matter and photomber densities
obtained from general fluid-dynamical considerations inlonetic treatment, in
a way that would recover the correct scalings for the intiegkguantities as well
as account for the decoupling of radiation from matter nearphotosphere. In
what follows we will assume that the flow has reached a mdtbeninated stage
by the time we start our simulations, so tliat const

Let us first consider adiabatic losses. Since we are dealitinganbitrary en-
ergy distributions we need to determine the average enesygyrhte of particles
and photon®f each particular energy, rather than that of the whole distribution.
To do this let’'s consider a monoenergetic populatioNgglectrons with energy
¥ (in units ofm,c?) inside a volumey. The total kinetic energy of the electrons is
U = Ne(y — 1), while the pressure is

INe

p= 3V B (8.32)
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The first law of thermodynamiail) = —pdV reads

_ 1 Ne 2
Nedy = 3V B-dV, (8.33)
or
1
dy = 3 yB-dinV. (8.34)

Depending on whether the expansion is in 2D or 3D we Nave |12 or V « I3,
respectively, wheré is a linear dimension. If the expansion proceeds at a rate
di/dt’, wheret’ is the comoving time, we can define a characteristic expansio
timescale

| dinl\™*
tagiab = dl/dv —( i ) . (8.35)

Dividing equation (8.34) byit’ and using the definition (8.35), we find

. 2 vp? . 2
YD = —5 P and ysp = - P
3 tadiab tadiab

(8.36)

for expansion into 2 or 3 dimensions, respectively. Noté tha scaling laws
(8.31) imply that the expansion in matter-dominated regoreeeeds in two di-
mensions (sinca « r=2), so we will appropriately use the cooling ratg, in our
simulations.

Similar reasoning holds for the photon field, provided tih&t $ource is opti-
cally thick and the photon gas thus behaves like a fluid. &tsté equation (8.32)
we now have

C 1N,

=-—— 8.37
wherex is the photon energy im.c? units. This leads to cooling rates
. 2 .
Xop = —= X and Xzgp = — X . (8.38)
3 tadiab tadiab

In the spherical outflow the comoving linear dimension ssake oc r, while in
matter-dominated reginrec t’ (sincel’ = const) and we can write for adiabatic
cooling timescale

dinr\™t  (dint\?
t""di""b:(w) :( av ) =t (8.39)

that is, the adiabatic cooling timescale is equal to the congplifetime of the
shell element.
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Another dfect in the expanding flow that we need to account for is thesdeser
of particle and photon densities over time. As the operagiimgsical processes can
create and destroy both photons and particles one cannpirgscribe the depen-
dence of the number densities with radius (nec r=2). Instead one can introduce
arateat which particles are lost from a unit volume, which we pagtine by “es-
cape” timescale. This is done simply byfférentiating the relation « t'~2 (2D
expansion) to give

dn 2n n

A A (8.40)
where we have definegds; = t'/2. Heren denotes the comoving number density
of either particles or photons. For 3D expansion we haye- t'/3.

As a consistency check, we note here that if we write the éevllequation
of pure adiabatic expansion (say, for photons)

dn(x)
dv

o .. n
= ~ax [Xn(X)] — —, (8.41)

tesc

multiply it by particle energy and integrate over all eneggiwe will recover the
proper adiabatic scaling laws given by equations (8.30)(@r&1) for 3D and 2D
expansionpyin ~ Urag & I™* anduyg o< r=8/, appropriate for radiation and matter
dominated phases, respectively.

The remaining question concerns the criterion to determwimether the pho-
ton field is coupled to the electron gas strongly enough togaaate in adiabatic
cooling. The simplest way of doing this is to consider the banof interactions
a photon undergoes during;a, given by

7(X) = Catadiab (8.42)

wherea(X) is the (energy-dependent) extinction ffa@ent. We then assume that
if 7* > 1, i.e. a typical photon interacts several times during ypetl expansion
timescale, the radiation field behaves like a fluid and onedasclude cooling
rate (8.38) in the kinetic equations. Conversely;ik 1, photons are not assumed
to be coupled to matter and do not cool upon expansion. A sigscription to
incorporate both regimes in the cooling rate would be

2 x T
3 tagiapl + 7(X)°

XZD -

(8.43)

8.2.2 Energy dissipation in neutron-loaded flows

We will now give a summary of the mechanisms by which energy lea dis-
sipated in a neutron-loaded flow, following a model by Belaglmv (2010). It
was shown in Paczynski (1986) that releasing0°? ergs of energy into a small
volume within a couple of seconds leads to a temperaturevefraeMeV at the
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central source. At such temperaturk® & (m, — m,)c? ~ 1.3 MeV) neutrons and
protons can be converted to each otherefigapture reactions

€ +p—n+v and € +n—- p+v, (8.44)

leading to the establishment of a nuclear statistical dgjiiim between the two
species (Beloborodov 2003b). The flow therefore inevitalalyies a significant
neutron component. As has been discussed in several workssfiBv et al.
1999a,b; Pruet & Dalal 2002; Beloborodov 2003a), this carelmofound ob-
servable &ects on both prompt and afterglow phases of GRB emissiore Wer
are focusing on the former, and will see that a significardtioa of the bulk en-
ergy can be dissipated in a neutron-loaded flow at the stagen the outflow is
still collisional.

The obvious main requirement for collisional dissipationtcur is a non-zero
relative velocity between the proton and neutron companefithe flow. This can
be realized in two ways (Beloborodov 2010): First, interstabcks that develop
if the flow is variable do not involve the neutron componerttjak can penetrate
through the shocked gas into the region propagating witffardnt Lorentz factor
(Mészaros & Rees 2000a). Secondly, it was shown in Derigteal. (1999b)
that protons and neutrons in the outflow can decouple bef@dlow reaches
its terminal Lorentz factor if the latter is ficiently high. Both cases lead to
volume dissipation of energy by nuclear collisions in thieipenetrating proton
and neutron flows. To keep our model simple and avoid dealitiy simulating
flows that are still accelerating, we will assume that theodeting of proton and
neutron flows takes place in the matter-dominated phase. ilN#@so not concern
ourselves with the details of the development of compoumvdsfland will simply
assume that such flow has already been set up at some radihere we start the
simulation.

It is natural to expect most of the collisional dissipatioriake place near the
radius where the neutron flow becomes "optically thin” totprs, i.e.7n < 1,

where
* npodr’ Lho
— — . 8.45
T fr Tn 4rm,cors (8.45)

Here we have definell,, and n, as the Lorentz factor and comoving number
density of the neutron component of the flow, as well as itetkenluminosity

Lo = 47m,c3r?I"2n,. The quantityr ~ 3 x 1072°cn? is the dfective cross-section
for nuclear collisions. At smaller radii (higher opticalpdks) the neutron and
proton flows are still coupled to each other, whereas at taeghi nuclear colli-
sions between neutrons and protons become too infrequdigsipate significant
amount of energy. The number of collisions per unit time leetvradiir, andr,

is given by
r2 ™(r2) 1 .
r 7n(r1) 2
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where we have introduced the Lorentz invariant colliside ra

dNcol

Neoll = M = C0'npnnrrel, (8-47)

whereT' g ~ I'/2I, is the relative Lorentz factor between the proton and neu-
tron components of the flow. In the last equality in (8.46) veeendefined the
proton number qu>Np = 4ncr?I'n, and used equation (8.45). Since dissipated en-
ergy is proportional to the number of collisions aﬁ,glis approximately constant,
equation (8.46) confirms the expected result that bulk ofitesipation occurs in
regions of the highest, (lowestr) that permits the compound flow to exist, i.e.
7, ~ 1. Therefore we will choose

Lo

. L— 8.48
4rm,c3I3 ( )

I'n

as the starting radius of our simulations.

A collisional encounter between a neutron and a proton cagither elastic
or inelastic. Upon an elastic collision the energy gainedalygyroton is quickly
shared with the rest of the flow by Coulomb collisions withestprotons. As a
result, the proton flow is heated to mildly relativistic teengtures. This thermal
energy is then continuously transferred to the lepton carapbby Coulomb in-
teractions and thereafter to the radiation field by invé@seapton scattering. The
corresponding (volume) dissipation rate in the frame cangpwith the proton
flow is

Qep \ﬁ # - 1)(©e + ©,)32 (8.49)

wheren, is the number density of positrgletectrons,®, = kTp/myc?, O =
KTe/meC?, IN A is the Coulomb logarithm angif the adiabatic index of the (pre-
sumably thermal) proton gas.

In order to assess the amount of energy that is dissipatedblp@b heating
it is more instructive to rewrite equation (8.49) in termsdafsipated energy per
baryon (in units om,c?) over one dynamical timescaigy = r/cl’

1 rer _ 2 nAme @pTT

nmyc2 ¢ Vo m, (7 - 1)(©c + 0,)32’

(8.50)

wherert = n.orr/I'. Plugging in the typical value®, ~ 1, InA ~ 15,y ~ 1.4 -
1.5 and assumin@. < 0, due to strong Compton cooling of electrgmssitrons,
we find

1 rQep
Nem,c? cIl’

~ 0.01577. (8.51)
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Equation (8.51) tells us the fraction of the flow energy tlsadissipated over the
timescale of expansion fromto 2r. Sincer; o« n.r « r1, this once again
confirms that most of the collisional heating takes placeretlradii.

It was shown by Beloborodov (2010) that shortly after thesighgtion starts,
the Thomson opacity of the flow is dominated by electrons asitions gener-
ated by non-thermal pair cascades (see below) in pair oreatinihilation bal-
ance, rather than by the electrons associated with prot®hs. typical optical
depth atr,, is about 20. Using this in equation (8.51) we can see thatrafgignt
fraction of the kinetic energy of the flow can be dissipatedcbifisional heat-
ing. One has to keep in mind, however, that the energy diegipahile the flow
is still optically thick tends to be converted back to thekoorotion of the flow
by adiabatic cooling. To obtain the actual energy in theatain field at the point
when the photons decouple from the flow one has to write thateaquaccounting
for heating as well as adiabatic losses and integrate it frpim the photospheric
radiusr,.

About half of the encounters between protons and neutr@nisialastic (Am-
sler et al. 2008). In such case the proton and neutron areegeavto mildly rela-
tivistic pionsz*, 7~ andx®, which promptly decaynr® — u* +v,, 7= > =+,
andz® — y +y. The muons, in turn, decay throughi — €" + ve + v, and
U~ — € + Ve + v, Altogether, about half of the energy of the inelastic pneto
neutron collision is carried away by neutrinos. The othdirisaonverted to sev-
eral relativistic electrons and positrons with Lorentzéasy, ~ m,/me ~ 300.
Thus, taking into account both elastic and inelastic dolfis, on average about
1/4 of the collision energy¥emyc? is given to the injecte@*. The rate of dissi-
pation is therefore

Q= 7T elMpC el (8.52)

wheren. is given by equation (8.47), while the fraction of the flow eyyedissi-
pated over one dynamical time becomes

1 rQinj 17T
oMy ol 16T, "
wherer, = rn/r. Equation (8.53) confirms what one would expect intuitivéhe
rate of energy injection in non-thermal pairs increases wjt(larger number of
collisions per proton) andl/T", (higher relative Lorentz factor between neutrons
and protons, i.e. higher collision energy). The non-thémnargy injection rate

exhibits the same~! dependence on radius as the thermal heating rate (8.51),
making their ratio fairly constant along the flow.

(8.53)

8.2.3 Initial conditions

In order to use the hydrodynamic scaling laws for deterngiriire initial condi-
tions at the start of simulations, we must first determinecthrestants of motion
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on the right-hand sides of equations (8.21) and (8.29) we&must findC,, C,,
Cs in

4
r’nl = Cy, rz(épkm + r‘q)czn) ?=C, and r¥3p,I*®*=Cs. (8.54)

The first two are obtained by noticing that they are propadldo the baryon
number and total energy fluxes of the flow, respectively. DeditN andL as the
total (spherical equivalent) number flux and luminosityta flow and noting that
at large radiim,c?n > pyin, We have

L

N
C, = R and C, = R (855)

For determiningCs we also need to specify the initial sizg of the fireball.
Assuming thatm,c?n < pxin andl” ~ 1 atr = rq, we find from the second and
third equations in (8.54)

_3Lrg”?

T

Note thatC, can equivalently be expressed in terms of the so-callecbbdoad-
ing of the flow,n = L/rrbczN , Whereby the scaling laws become

(8.56)

L 4 L
2 2 2
r’nl = r?| =pkin + Myc?n| I? = —
4rmycin’ ( 3Pk Mo ) 4nc’
3Lr?3
r8/3pkin F4/3 = 1—0C (857)

The evolution of the flow can be summarized as follows: a tamhadominated
fireball of initial dimensiorrg accelerates d¥(r) = r/rq until the radiation energy
density of the flow becomes comparable to rest energy denshis occurs at
the so-called saturation radius~ nrg, wherel' ~ /2. The expansion at larger
radii proceeds in a matter dominated coasting phase withstaot Lorentz factor
I' = n, However, bulk of thenternal energy at this stage is still carried by radia-
tion, so thajyin ~ Uag. The whole history of the fireball evolution is determined
by just three parameters: luminosltybaryon loading; and radiugg at the base
of the flow.

The conditions at the start of the simulations=(r,) can now be simply read
from equations (8.57). The required quantities are the (sang) proton number
density, radiation energy density as well as radiation tapire. Assuming that
the proton and neutron flows decouple at- rs, the proton number density Bt
ist

L

'Here we have assumed that the energy carried by protondisignly exceeds the energy
carried by neutrons.
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The radiation energy density and temperature can be wagen

r -8/3 r -2/3
adlf) = urads(—”) L o) = es(—”) , (8.59)
Is Is
where
3L KT k L\
~— and 6s= x 8.60
trads 16mer2n?’ T mec? T mec? (16vracr§n2) (8.60)

are the radiation energy density and temperature at theasiaturadius & is the
radiation density constant).

Note that if the flow becomes optically thin befarg the scaling laws (8.59)
only hold out to the radius where the optically thitkn transition takes place.
After that the scalings becomg,g « r—? andé = const.

We are now in a position to verify our earlier claim that mofthe internal
energy of the flow is carried by radiation. Assuming a commemgerature,
we simply need to show that the number of photons far excdedaumber of
protons and their associated electrons. First note thattb®n number density is
Noh = Urag/3KT oc UZ4, which, by virtue of (8.29), confirms the well-known result
that the total number of photons (in our case, the total nurhlpe) is a conserved
guantity in adiabatic cooling. This statement holds relgmsiof whether the flow
is in radiation- or matter-dominated regime. From the first third equations in
(8.57) we then get

e _ 8 e
g a2 10* R (8.61)
52
where we have used the notatidn= 10*A, (in cgs units). Equation (8.61) con-
firms that for any plausible GRB parameters the internalgnef the flow is
indeed dominated by radiation and we are thus justified ingugie equation of
statep = pxin/3 in section 8.1.

We should mention here that the above reasoning does notaholek very
early stages of the expansion when the lepton componentigated by electron-
positron pairs, which can carry a significant fraction of iternal energy if the
comoving temperature is not much below 1 MeV (Paczynski 19&&@wever,
employing the relativistic equation of state in section i8.%till justified in this
case since the pairs are relativistic (albeit marginaffypueh temperatures.

8.2.4 Calculation of the observed spectrum

As the simulation is run, we obtain the history of comovingtam and pair dis-
tributions on a characteristic world liret — r = const In a steady flow (which
we are considering here) all such world lines are equivadentwe simply get
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the distributions as a function of distancérom the central source. To find the
spectrum seen by the observer, one could then choose sagee laherer < 1
and simply Lorentz transform the comoving radiation fieldhas radius into the
external frame, assuming that no further spectral evaiutkes place at larger
radii. However, there are some problems with this simple@gpgh. First, the
radius where the flow becomes optically thin is not a well+ytedi quantity, since
the optical depth is a function of viewing angle. Second,dhe-zone treatment
becomes less accurate when the flow is optically thin. Theore#or this is that
our simulations deal with only local (comoving) distributs and neglect the fact
that each point in the flow is in causal contact with other aftthe flow that
have diterent (relative) Doppler factors, therefore the photonsiag at a given
point at a given time have undergonéféeient Doppler shifts. While our local
treatment is still correct energetically, it misses tiie& of such superposition
of relative Doppler shifts on the spectral shape. A relatedblem is that the ra-
diation field becomes increasingly beamed in the radialctioe as the optical
depth decreases, and is no longer isotropic in the frame wogavith the flow.
This is a geometricféect caused by the fact that bulk of the radiation originates
from close to the photosphere4£ 1), which subtends an increasingly small angle
when viewed front > r,.

To overcome these problems we propose an alternative meftaadculating
the observed spectrum that takes into account ffexts arising from the non-
locality of the radiative transfer problem. The idea is dienghaving found the
photon and patrticle distributions at all radii from the slation, we can use them
to calculate the emissivities and extinction fiments for all processes every-
where in the flow. The emerging spectrum can then be foundroglgiemploy-
ing the formal solution to the radiative transfer equatiorthe external frame.
This way the distributions obtained from the simulation ergarded as a 0-th
order approximation, while using the formal solution pa®s the next order in
accuracy.

During a simulation the code outputs the comoving emigswjt and absorp-
tion codticients«’ as a function of radius, both of which are isotropic in the flow
frame. The corresponding quantitipandx in the external frame are found using
the Lorentz invariants

% = invariant and kv = invariant (8.62)

wherey is the photon frequency. Defining the Doppler factor as
D =[(1-pu)]™ (8.63)
wherey is the angle between the radial direction and the line oftsigé find

K (r,v/D)

j(r,v,p) = j'(r,v/D) D* and «(r,v,pu) = 5

(8.64)
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where we have used the relatien= v'D between the frequency in the external
and the comoving frames.

Let’'s now use the quantities defined by equation (8.64) ttevthie formal so-
lution of the radiative transfer equation in cylindricalbedinates, with the-axis
pointing towards the observer. The intensity along a rap ait impact parameter
h propagating along theaxis to the distant observer can be written as

1(z— c0,v) = I"(rn, v/Dy) DEe™® 4 f e @) j'(r,y/D) D*dz, (8.65)
Zn

wherer = V22 +h2, D, = D(r,), z, = +/r?2—h2 and we have uset{v)/»® =
invariant. The comoving intensity at the starting radius, is obtained from
fluid-dynamical considerations and is given by

1"(rn, v') = B[V, 6(rn)1, (8.66)

whereB is the blackbody intensity an€(r,) is given by equation (8.59). The
optical depth along the ray fromto infinity (observer) is

(zv) = f"" w dz (8.67)

Note that the Doppler facta® in equations (8.65) and (8.67) is a functionzof
throughu = z/ V22 + h2.

Once the intensity is known for all impact parametgrthe flux at the observer
can be calculated simply as

F(v) = % f:o [(z— oo, v) hdh. (8.68)

Compared to simple boosting of the comoving spectrum ineo @kternal
frame, the described method of calculating the observedtigpe has the fol-
lowing advantages:

(1) It automatically includes contributions fromfiirent parts of the flow moving
at different angles to the line of sight, resulting irffdrent Doppler boosts from
the local comoving frames.

(2) It correctly accounts for the dependence of the photesphadius on the
viewing angle, which varies within a factor ef 2 inside the cone of opening
angle ¥I" where bulk of the emission originates from.

In this form the preceding calculation assumes a steadyoautfHowever,
the method can be extended also to variable flows. In thistb@semission and
absorption coféicients become functions of time as well as the distance fram t
central source and one needs to employ the formal solutiotifi@-dependent
radiative transfer problem. The characteristic worlddioe— r = constant are
obviously no longer equivalent and several simulation anesrequired to obtain
j” and«’ on a two-dimensional grid(r).
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8.3 Numerical results

8.3.1 Non-magnetized flows

Let us now consider some particular realizations of gamayabursts outflows,
using the framework described in the preceding sectionsrti®g with non-
magnetized flows we will describe the evolution of partichel @ohoton fields
inside the flow as well as the formation of the observed spattpaying particu-
lar attention to high-energy emission. To demonstrate taleilty of the kinetic
theory approach we have adopted here to model GRB emissdbalknv direct
comparison with Monte-Carlo simulations by Beloborodo®1@), we have cho-
sen to study a similar region in parameter space.

For our simulations we choose the following fiducial modebtpn flow lu-
minosity L = 10°? erg s?, neutron flow luminosityL, = 10°! erg s?, Lorentz
factor of the proton flow (baryon loadin@)= 600, Lorentz factor of the neutron
flow I, = 100, initial radius of the flow, = 10’ cm. The starting radius of the
simulations is determined from equation (8.48), which giuge= 5 x 10 cm.
The comoving radiation temperature is found from equat&b9) to be about
0.5 keV.

The formation of the spectrum within the flow as we follow a retwéeristic
ct — r = constant fronr,, to the photosphere can be summarized as follows: After
the dissipation starts, most of the energy is initially deled in the form of high-
energy pairs, which can be seen by comparing equations)(8rill (8.53) and
noting that the initial Thomson optical depth is of the ordeunity. As the pairs
cool, they upscatter photons from the thermal pool to starhing a tail to the
Planck distribution with a slope characteristic of a coglpectrum (photon index
a = 1.5). Due to the low blackbody temperature, the source isaihytoptically
thin to pair production for photons with (comoving) enesgielowx’ = E/mc? ~
100. However, this soon changes as more and more photonpsuatiered from
the thermal distribution. The source becomes opticallgkthd pair production
and a cascade develops. The pairs produced by the cascadeiakly (within
about J2 of the dynamical time) increase the Thomson optical dep#bout 20.
By that time the continuous heating rate, being proportitmar, has increased
to deliver about the same power as the non-thermal injec#@na result of the
pair cascade, the high-energy slope of the pair distrinltecomes steeper than
that of the cooling distributionN(y) « y~2).The Compton upscattered spectrum
will soften accordingly

Due to the high compactnesses involved, the pair cascads fd#ce in the
saturated regime, i.e. all high-energy upscattered plsotah produce further
pairs. An important parameter characterizing the cascadde defined as =

2We must stress here that the preceding description mete$yrites the history of spectral
formation as we follow an element of the flow along a charéstierworld line, and isnot the
spectral evolution seen by the observer.
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(2/3)yox, (Svensson 1987), wherg is the injection energy of primary non-
thermal pairs and; is the typical energy of soft photons. The quangtydeter-
mines whether the cascade takes place in the Thomson or-Kisimna regime
(zr < 1 or> 1, respectively), also how many generations of secondarg pee
created etc. In our casg ~ 1/200 (comoving) ango = 300, sozr ~ 1. Most of
the cascade is in Thomson regime (only scatterings on theekigenergy primary
pairs take place in the Klein-Nishina regime) and there avesl generations of
secondary pairs and photons, leading to a smooth overalirsipe. If we consider
the non-thermal cascade alone, it can be classified as bEiygeoll according to
Svensson (1987), i.e. partly non-linear. In this case tfid@get photons for pair
production are provided by the cascade itself, while paitiog is still dominated
by the original pool of soft photons. Saturated type Il cdsckends itself to an
analytic solution and is determined by just two parametersind the minimum
photon energy’ .. where saturated pair production takes place. Mostimptiytan
such cascade is independent of the soft photon luminosityiéZski & Lightman
1985), whereas pair-production opacity enters only thinotingp parametex’ . .
However, if we include thermal heating, the preceding d@ssion is no longer
strictly valid. The reason is that it introduces an addiiilonon-linearity to the
problem through Comptonizing photons into the range whasg tan contribute
to the pair-production opacity, as well as producing adddi cooling for the
high-energy pairs. At the same time, the power in thermdiihgaepends on the
optical depth of thermalized pairs, which is determinedh®ypair-cascade itself.
Despite this, the robustness of saturated cascades ktlsalis to make reason-
able estimates using the analytic solution together wigregbpropriate values for
XE) andx;nin'

In Figure 8.1 we plot the observed spectrum for the fiduciatleholt bears
a strong resemblance with the Band-type spectrum usuadly seGRB-s, con-
sisting of two smoothly joined power-law segments and pegakiose to MeV.
The spectrum below the peak is made up of blackbody photorectet! from the
central source and released at the photosphere. Howeggrhtiton index devi-
ates appreciably from the Rayleigh-Jeans slope. This cattideuted to the fact
that the observed spectrum is a superposition of emissoon €ifferent parts of
the photosphere havingfterent Doppler factors, leading to softening of the low-
energy power-law. Just above the peak the dominant cotitiibto the spectrum
comes from thermal Comptonization by Coulomb-heated paine Comptoniza-
tion takes place in unsaturated regime, leading to a poswerspectral segment
starting from the thermal peak. The thermally Comptonizeectum cuts fi
above a few 10 MeV, corresponding to the electron tempegatuaround 15 keV
in the comoving frame. Above this energy, inverse-Comptattsring on non-
thermal pairs starts to contribute. Note, however, thattieno easily discernible
break between the two components. One of the reasons foisthiad fact that
comparable amount of energy is dissipated by collisionalihg and high-energy
pair injection (see equations (8.51) and (8.53)). Also,abshe photons in this
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Figure 8.1: Spectrum from a collisionally heated outflow. ddbparameters:
proton flow luminosityL = 10°2 erg's, neutron flow luminosity., = 10° ergss,
Lorentz factor of the proton flor = 600, Lorentz factor of the neutron flow
I', = 100. The dashed straight lines correspond to photon indifgs 25 and
3.5.

energy range undergo several scattering events on colsl pefiore being able to
escape, losing a significant fraction of their energy in tteegss. This Compton
downscattering has an overall smoothiffiget on the spectrum. A distinct feature
of the model is a broad annihilation line on top of the otheexmooth spectrum,
due to cooled-down electron-positron pairs. Overall, fhectrum in Figure 8.1
is remarkably consistent with the spectrum obtained by IBaiodov (2010) for
similar parameters using Monte-Carlo methods.

As discussed before, the spectrum at the highest enerdiesg&eV in the
external frame) is shaped by saturated pair cascades. Tame@rz; is close
to unity, for which the analytic solution predicts an almfiat injection spectrum
X jpa(X) Of cascade photons in terms of injected energy per logartiphoton
energy interval. The¢2n’(x’) photon distribution in the optically thick regime is
simply proportional tax’ j,a(X')/kpp(X). Heren'(X) is the comoving photon num-
ber density per dimensionless energy interval (the pringgsfg that we are deal-
ing with comoving frame quantities). The absorptionfio@nt kyp(X) o« X2,
wherea is the photon index of the target photon population (seevield his
leads tox'?n’(x’) o« X ~**1, which is steeper by unity compared to the target spec-
trum atx’ < mec?. This steepening can be seen starting at3000 in Figure 8.1,
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which corresponds t& = x .. ~ 5 in the comoving frame. Below this energy
the saturated pair-cascade is quenched, since the timdscalompton down-
scattering becomes shorter than thatyfgrabsorption. Downscattering flattens
the spectrum below . and leads to a smooth break connecting the high- and
low-energy power-laws.

In view of the relatively small distances of the dissipati@gion from the
central source, it seems rather remarkable that signif@aktemission is able to
emerge from the flow. The pair-production opacity constsaam the flow Lorentz
factor and the dissipation radius have been discussedénaevorks (e.g. Woods
& Loeb 1995; Baring & Harding 1997; Lithwick & Sari 2001). Reatly, the ob-
served GeV emission together with the typical variabilitpéscale in dferent
sources like e.g. GRB 080916C and GRB 090902B has been uptatmstrin-
gent lower limits onl" (Abdo et al. 2009b,a). We argue here that such argument
is strictly valid only if the dissipation process ceaseslathe flow is still opti-
cally thick to pair production, in which case high-energyigsion is quenched
exponentially E o« Foexp(-7,,)). In the model considered here the dissipation
operates over a range of radii, including those where< 1. In such case we
can see the photons that are produced within unit opticghdapide the source,
which merely leads to a steepening of the spectrum at higlegees instead of a
cut-off. The variability timescales deduced from soft gamma-mglytéurves char-
acterize emission from smaller radii compared to where ifjle-Bnergy emission
originates from, despite the fact that both MeV and GeV eimisare produced
by the same mechanism. We have already shown how the stagpdrihe spec-
trum comes about for the comoving photon distribution assalteof saturated
pair-cascades. In what follows we will show that the same#@br the spectrum
seen by the distant observer.

We can make a simple analytic estimate of the pair-prodoatjpacity and
the photospheric radius as a function of photon energy gukie delta-function
approximation to the pair-production cross-section (@dulSchréder 1967)

/ / / / 1
opp(X's Xp) ~ n(@) orX40 (Xl - ;) (8.69)

to write the optical depth for a photon of enerngypropagating over distanaks’
in the flow frame

dr,,(X) = ds fapp(x', X)) N'(x7) dx; =~ ds n(e) ot X3 (X)) VTS (8.70)

wheren(a) is a numerical factor that depends on the power-law indelefarget

photon distribution. To write this in terms of external frarquantities we as-
sume an isotropic comoving radiation field with a power-lavergy distribution

n'(x’) e« X' =, in which case the external and comoving frame distribtiare

related as

+1
[(1+p)

X n(X) = XN(X) oy 1147 - (8.71)
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The photon propagation distances in the two frames areetelatds = ds/D.
The optical depth for a radially propagating photon canedfoee be written as

, a+1
dr),(X) = dr n(a) o1 ————— X N(X) |y —r(145)x - (8.72)

[r@+p)]

The total pair-production optical depth at radiusan be obtained by defining
L(X) = 4rar2cxn(x) and using it to integrate equation (8.72) franto infinity.
Settingr,, = 1 and expressingwe then find the photospheric radius

a+1 L(Xl)

r;y(x) =n(@)or [F(l +B)]2 4rC

‘o [@]ﬁ N (8 73)

where we have used the relatioch = x/I'(1 + 8) between the comoving and
external frame energy of a radially moving photon.
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Figure 8.2: Radius of the pair-production photospheretiveldao the Thomson
photosphere as a function of photon energy for the fiducialehoSolid curve

represents the numerically calculated radius, the dashedbrresponds to the
analytical estimate given by equation (8.73).

In Figure 8.2 we plot the photospheric radius for the modekspim shown
in Figure 8.1, calculated by using the exact pair-produnctimss-section as well
as the actual photon distributions at all radii, togethehwie analytic estimate
(8.73) calculated for power-law target spectrum (the lira whoton index &5 in
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Figure 8.1). We can see that the agreement between our rgtigiage and exact
calculations is rather good. For these particular paramebe pair-production
photosphere is outside the Thomson photosphere only fdoplemergies above
~ 5 GeV.

To make an estimation of the expected luminosity as well asplectral shape
at high energies one can follow the argument made in Belaow¢2010) and
assume that all energy injected as high energy pairs wilepeocessed to lower
energy photons by pair cascades and releasef(a. This implies that all pho-
tons emerging from the source above a given enargye the result of energy
injection at radii larger thany, (x). Defining the fraction of the flow energy car-
ried by radiation (per dimensionless energy interval) as

me LX)

Te =W 8.74
m, 4ncr2ngl? 8.74)

& rad(X) =

we can thus write

dx = dinr = —— 8.75
ﬂ Erad(X) dX Ly(x) npmp(;2 cr 16T, I';,‘ (X)’ ( )

Y

where we have used the collisional dissipation rate give8i®3), noting that
energy dissipated over one dynamical time equals the emgsgipated pedinr.
Differentiating both sides of equation (8.75) with respectaad using (8.73) we
obtain

ncr, I’
477(“) O-T(a + 1) I'n

ras A 3 St

X dinx;

&rad(X) = (8.76)

Xl=|r(1;/?>|2 '
By noticing thatL(x;) o« x;** we can take the derivative in (8.76) and cast the
equation in a more transparent form

1 o mly(e-[ra 1B et 87
16n(e) ormy L (@ + 1) i Erado(X)’ '

Srad(x) =

where we have used the definitions (8.48) and (8.74) f@nde&aq0(X), respec-
tively, as well as. = 4rm,c3r?n,I'2. The quantityeaqo(X) denotes the extension
of the low-energy (target) photon distribution to the olbsdrenergy, allowing di-
rect comparison between the expected power in the high gseertrum versus

a simple extrapolation of the lower-energy power-law. Eggo(X) o« x ! we
find from equation (8.77) thatq(X) < X%, i.e. we should observe a steepening
of the spectrum byAa = 1 at high energies. This is consistent with the earlier
discussion in terms of pair-cascades in the comoving frame.
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8.3.2 Magnetized flows

In most plausible scenarios the GRB outflow is expected ty eaideast a moder-
ate magnetic field. Magnetization will provide an additibm&chanism of cool-
ing electron-positron pairs in addition to Compton and whkrefore &ect the
spectral formation at all energies: directly through syotton radiation in the
hard X-ray range as well as indirectly through suppresdnegpair-cascades at
high energies.

Magnetization is parametrized as the fractignof the bulk kinetic energy
carried by the magnetic field, leading to compactness

ot I egoTL

=—_ _Ug=———1—. 7
mec? T B Armec3rI3 (8.78)

B

The case with" = 600 and’,, = 100 has been taken as the basis and the simulation
was run forez = 0, 103, 102, 0.1 and 05. The corresponding ratios of magnetic
and radiation compactnesses at the start of simulationss@rg/l;aq(rn) = O,
0.0043, 0043, Q43 and 2. Here the compactnekg(ry) is defined as

oT Ly (rn)

_— T
ArmeC3r 3’ (8.79)

Irad(rn) =

whereL,(r,) = 16rCraIumnd(rn)/3 is the luminosity carried by radiation and
Urag(rn) IS given by equation (8.59). Figure 8.3 shows tife& of the magnetic
field on the spectrum. Theffects on diferent quantities characterizing the flow
are summarized in Table 8.1.

The synchrotron radiation from the thermal component optuedistribution
is strongly self-absorbed and makes no contribution to theerved spectrum.
The relativistic non-thermal pairs (aboye~ a few) on the other hand radiate
synchrotron in the optically thin regime. It was shown in@®rodov (2010) that
for typical parameters their synchrotron radiation peakbé same domain as the
blackbody component and is therefore buried under ther lEgtesub-dominant
magnetizations. Just below the thermal peak the additi@yméhrotron photons
has the &ect of softening the spectral slope (see Table 8.1), to satusre com-
patible with those typically observed (Preece et al. 20@@)lower energies the
softer synchrotron spectrum will emerge from under the hlaedmal spectrum,
and can be seen as a separate component. This might provedg@lamation for
the X-ray excesses that have been observed in several farsece et al. 1996),
a prominent recent example being GRB 090902B (Abdo et aR&D0

Low-energy emission

Below 5 — 10 keV the synchrotron emission switches to a gbrsalf-absorbed
regime. At any given stage of the flow expansion there existeladefined self-
absorption energys, below which the source is optically thick to synchrotron
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Figure 8.3: Spectra from a magnetized flow. The solid, stashed, long-dashed,
dotted and dash-dotted lines correspond to magnetizatioa$, 103, 102, 0.1
and 05, respectively. The straight dotted line shows a powerdpactrum with
a=1.

radiation. Thantrinsic spectrum ak < xs has a photon index = —1.5, charac-
teristic of a power-law electron distribution producing gelf-absorbed emission.
However, as the flow expands, the self-absorption frequdeacseases, as does the
synchrotron emissivity abowe. The observed low-energy spectrum is therefore
formed as a superposition of emission produced right ablowes¢lf-absorption
frequency at dterent radii. To see this and also give a rough estimate foexhe
pected spectral shape, let’s write the emission and alisoreficients as (see
e.g. Ghisellini & Svensson 1991)

i) = f P(x.7) Ne(y) dy. (8.80)
2 d [ne(y)
o= =g [Py |2 oy 8.81)

3We are temporarily omitting the primes from all quantities $simplicity even though we are
working in the comoving frame.
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Table 8.1: Results of simulations

es? Epeakb a® 5radd Me/rn® Y' er/ Qinjg kTeh
(MeV) (keV)

0 3.2 0.30 25.6 0.20 1.03 9.7

1073 2.8 0.60 0.30 25.0 0.20 1.01 9.6

1072 2.1 0.98 0.30 23.0 0.17 0.93 9.1

0.1 1.3 1.17 0.31 16.9 0.08 0.68 7.9

0.5 1.2 1.10 0.36 8.9 0.03 0.36 6.8

Notes.
a8 Magnetization

b Spectral peak energy.
¢ Photon index in the 100 — 500 keV range.
d Radiative #iciencyerag = L, /L.

¢ Radius of the Thomson photosphere relative to the raglies5.3 x 10'° cm where the
dissipation starts.

" Pair yieldY = M/yo, whereM is the secondary pair multiplicity ang = 300 is the
Lorenz factor of injected electrons.

9 Ratio of thermal and non-thermal dissipation rates, at
M Pair temperature at, .

whereng(y) is the pair number density pely. For our purposes it is $licient

to use a simple delta-function approximation for the ispicsingle-particle syn-
chrotron emissivity, i.e.

40'TUB 2 2
PO¢Y) = 3o PO (k=) (8.82)
wherex. = B/B is the Larmor energy im.c? units andB,, = mc®/ne ~
4.4 x 10" G is the critical magnetic field strength. The electypositrons re-
sponsible for the partially self-absorbed emission aréégower-law tail of the

distribution, thus we may writae(y) = Ay™. The emission and absorption coef-
ficients now take the form

. 2 orUg 1 X (-2
=-A — |— 8.83
0 =3 AT (] 883)
and
27_‘_2 e[ x —(6+4)/2

In the comoving frame the following scalings hold as a fumttiadius from the
central source (or, equivalently, comoving time)

B = /8megn,m,c? oc 11, X, o rt, Accr2, (8.85)
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The characteristic optical depth at a given photon energyis

2
2 D (0 o« (xr) 602, (8.86)

=5 T

Settingrs(X) = 1 we find that the self-absorption frequency scales as
Xs oc 172, (8.87)

From Equations (8.84), (8.85) and (8.86) we also find that
Xs

= y2 = constant (8.88)
XL

thus the energys of the pairs emitting near the self-absorption frequenaoyai@s
the same along the flow. The valueyafis a weak function of the magnetic field
strength and takes on values between 10 and 15 for the cassgdeed here.

The emissivity near the self-absorption frequency can hd feom Equation
(8.83), settingk = xs. Using (8.85) and (8.88) we find that

Js(xs) o172, (8.89)

For the optically thin synchrotron emissivity we may write

~(5-1)/2
X) (8.90)

1409 = 1095

Xs

The radiation energy peaix in the external frame normalized to the total flow
energy is expressed as (reintroducing primes for comovargé quantities)

1)
= dl 8.91
rad) me%@cﬁ . (8.91)

wherer}(x) o« 1/x is the photospheric radius. The integral is performed aver t
optically thin domain for a given photon energy. Insertinguition (8.90) into
(8.91), using the scalings (8.87), (8.89) amde r~2, and finally observing that
Xs = X at the photospheric radius, we arrive at the result

Erad(X) oc X, (8.92)

with the corresponding photon index for the partially ssdsorbed emissian =
1.

Note that the low-energy emission is delayed relative tagdmama-rays, ow-
ing to xs oc 1™t = (cl?tepy) 2. In principle, this emission can extend all the way
down to the optical band, with a typical delay of the order aiet. However, it
is not strong enough to explain the bright optical flashes sesome bursts (e.g.
GRB 080319B).
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High-energy emission and pair cascades

Increasing the magnetization has strofig& on the high-energy emission since
synchrotron cooling of the non-thermal pairs starts compgewith the inverse-
Compton process. A direct consequence of this is the dexaddlse high-energy
flux. Magnetization also has a suppressiftg& on the pair-cascade as a fraction
of the particles’ energy is given to low-energy synchrotradiation which cannot
participate in the creation of secondary pairs and is thsisttothe cascade pro-
cess. One can show that the multiplicity of each subsequangpneration in a
saturated cascade is suppressed by a fdgter 1 + eg/rag. FOr magnetic fields
approaching equipartition with radiation (i.ez/rag ~ 1), only two generations
of secondary pairs can make a significant contribution tddked pair multiplic-
ity. As a result, the total pair yield decreases frgm: 0.20 to about 025 as the
magnetization parameter increases from 0.5o(Dable 8.1).

The decrease of the pair yield leads to the decline of the Bloonoptical
depth in pair creation-annihilation balance, as the tworal&ed byr; o Y2
(see Equation (23) in Beloborodov 2010). As a consequeheetatdius of the
Thomson photosphere also decreases as magetizationaased. Most impor-
tantly, however, it results in the decrease of the thermatihg rate, since the
latter proportional tar (see Equation (8.51)), and thus also the r@g/Qmj, as
the non-thermal injection rate is uffiected. Interestingly enough, the total radia-
tive eficiencye,g remains almost unchanged (or even increases moderatély). T
diminished total dissipated energy is more than compeddatdehe decrease in
adiabatic losses of the photon field due to the lower optieatld, which allows
an earlier decoupling of radiation from matter.

On the other hand, the mean photon energy, which is roughteleted with
the spectral peak, does decrease. This is the result of theasedumber of
photons due to synchrotron radiation, which have to sharavhilable energy. In
the absence of magnetization, the number of photons is sippately conserved:
itis unchanged by adiabatic cooling and Compton scatteand the amount pro-
duced by the annihilation of injected pairs is negligibleéefefore given the flow
energy per photon at launch, the average observed photogyesienply tracks
the radiative #ficiency. Instead, with increasing magnetization, the ayeen-
ergy approximately follows the number of introduced phstm@ince the radiative
efficiency does not change significantly.

Looking at Table 8.1, we can see that the temperaddref the thermal com-
ponent of the pair distribution decreases by about 30 % asetagtion is in-
creased tag = 0.5. This is a sole consequence of the decreasing Compton
temperatur@¢ of the radiation field, brought about mainly by the introdoict
of soft synchrotron radiation from non-thermal pairs. Nitat even though the
thermal (volume) heating rate of pairs decreases with asing magnetization,
the heating rat@er particle does not. Also, the thermal pairs are unable to cool
by synchrotron radiation because they emit in a strongliradedorbed regime.
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As O, — O¢c ~ constant, the decrease of the Kompanggiarameter defined as
y = 411(® — O¢) is mainly the result of the smaller Thomson optical depth of
the pairs. This leads to a steeper slope of the thermal-Corgatd spectrum
above the peak. At high magnetization, however, the symidmwemission from
the highest energy electrons will start distorting the khegiergy power-law, as
evidenced by a subtle bump near 15 MeV in ¢ége= 0.5 spectrum in Figure 8.3.

8.4 Conclusions

Nuclear collisions between protons and neutrons can @issg significant frac-
tion of the kinetic energy of a GRB outflow by heating the prot@mponent as
well as via non-thermal injection of high-energy pairs t8sg from inelastic p-n
collisions (Beloborodov 2010). The dissipation operatdatively close to the
central source and over a range of radiil0'* — 10 cm).

We have modeled the emission from such an outflow by selfistamly solv-
ing the time-dependent kinetic equations describing tlnduéion of particle and
photon distributions inside the flow. The simulations are m the comoving
frame, following a ‘representative’ fluid element alongwisrid-line as it propa-
gates through the dissipation region, expecting all otlements of the outflow to
undergo similar evolution. Although our treatment of raéid@processes is local
(in a sense that fferent elements of the flow are assumed to be causally discon-
nected), we have proposed a simple method of taking intoustdbe éfects of
emission from dterent flow elements propagating at various angles to thefine
sight on the observed spectrum.

Owing to the relatively small distances from the centralieagthe thermal
photon field advected from the centre still carries a sizhtgion of the total flow
energy when the dissipation begins and has a significaneimfki of the spectral
formation. Most importantly, it provides the seed photoms @omptonization,
leading to a Band-type spectral shape peaking in the MeVeraimge hard low-
energy slope of the thermal component also makes it easyctomanodate even
the hardest observed GRB spectra.

An important feature of the model is the significant amounfmoiilti-)GeV
emission it predicts. It is a direct consequence of the faat ¢ollisional heating
operates over a range of radii. Thus, even though the flowtisally thick to
GeV photons at the beginning of the dissipation episodeggbmes transparent
to photons at progressively higher energies as the flow egdmut while the
dissipation is still operating. As a result, the high-eyesgectrum exhibits a
steepening relative to the slope at lower energies, insitadutdf.

A subdominant magnetization will lead to softening of thedpal slope be-
low the peak due to the additional contribution from soft@dyotron radiation of
non-thermal pairs. A separate soft component at lower eweigalso produced.
The additional cooling of the high-energy pair distribatiue to synchrotron has



158 CHAPTER 8. GRBs FROM NEUTRON-LOADED FLOWS

a throttling dfect on the pair-cascades. The multiplicity of secondaryspaill
decline, as will the thermal heating rate since it dependghermrhomson optical
depth. The resulting spectra will peak at lower energiespared to the non-
magnetized case. All in all, the low-energy slopes as wedipestral peaks from
magnetized flows are in better agreement with those typichiéerved in GRB-s
(Preece et al. 2000; Nava et al. 2010), relative to case withagnetic field.



Chapter 9

Spectral states of accreting black
holes

The physical processes giving rise to the X/g@amma-ray emission of accret-
ing black-hole binaries (BHBs) have been a matter of debates the last four
decades. The hard-state spectra, showing a strongicateaind 100 keV, are well
described by thermal Comptonization (e.g. Poutanen 19@8arski & Gierlihski
2004), while a weak MeV tail requires the presence of nomtla¢particles (Mc-
Connell et al. 1994; Ling et al. 1997). The origin of seed pbivtons for Comp-
tonization is, however, much less clear. An apparent caticel between the
spectral slope and the amount of Compton reflection (Zddiatsal. 1999) ar-
gues in favor of the accretion disk, while the observed aperay correlation
(Motch et al. 1982; Kanbach et al. 2001) leans toward thelaytion hypothesis
(e.g. Fabian et al. 1982; Wardzinski & Zdziarski 2001) ehasting questions are
then: what stabilizes the X-ray spectral sloperat 0.6—0.8, and what fixes the
temperature of the emitting plasmalkdi, ~ 50-100 keV (Zdziarski et al. 1997;
Poutanen 1998; Zdziarski & Gierlihski 2004)? Do the feadifaom the cool ac-
cretion disk and the thermostatic properties of electrositpon pairs (Haardt &
Maraschi 1993; Haardt et al. 1994; Stern et al. 1995b; Ma¢tad. 2001) play a
role here? Or does the cooling by synchrotron radiationdixam & Yi 1995) act
as a stabilizer?

In the soft state, BHB spectra are dominated by thermal digskson of tem-
peraturekTgg ~ 0.4-1.5 keV. At higher energies the spectrum is power-i&e/-|
and shows no signatures of the ciif{@rove et al. 1998), extending possibly up to
10 MeV (McConnell et al. 2002). This emission is well desedtby Comptoniza-
tion in almost purely nonthermal plasmas (Poutanen & Co®381 Gierlinski
et al. 1999; Coppi 1999; Zdziarski et al. 2001; Zdziarski &fHnski 2004). We
can then ask why the electrons are nearly thermal in the hatd, sand what
causes such a dramatic change in the electron distributi@mwransition to the
soft state happens. Poutanen & Coppi (1998) proposed thawvthstates are dis-
tinguished by the way the energy is supplied to the electroypshermal heating,
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dominating during the hard state, and by nonthermal ac@ber, operating in the
soft state. However, their treatment of Coulomb collisiGusingeqrair code by
Coppi 1992, 1999) was approximate, and they have negletedtect of syn-
chrotron boiler, involving the emission and absorption yi@hrotron photons,
which can act as arfiecient particle thermalizer (Ghisellini et al. 1988).

Ghisellini et al. (1998) studied for the first time the condanefect of the
synchrotron boiler and Compton cooling on the electrorrithstion and photon
spectra (but neglected Coulomb scattering). They considetwo-phase corona
model (Haardt & Maraschi 1993; Haardt et al. 1994; Stern e1995b), where
half of the high-energy radiation was assumed to be repsedeby the disk to
soft photons. As the actual geometry of the emitting regsamot known, we start
from pure synchrotron self-Compton models (i.e. with nceexal soft photons)
and compute self-consistently the electron (positron)adraton distributions. We
then investigate how the additional soft photons (e.g.o@aged with the inner
radius of the cool accretion diskjfact the equilibrium distributions and compare
the results of simulations with the data on Cyg X-1. The pneiary results of
this study were presented by Vurm & Poutanen (2008).

9.1 Model setup

We consider a black hole of mass M), typical for stellar-mass BHBs. We as-
sume that the inner accretion flow is hot and almost sphermcaiesponding to
the advection-dominated (Narayan & Yi 1995; Abramowiczle1895; Esin et al.
1997) or to the recently discovered luminous hot accretiow 8olutions (Yuan
2003; Yuan & Zdziarski 2004). One expects that most of theitatonal energy
release happens within aboBt= 10Rs = 3 x 10’ cm (whereRs = 2GM/c?
is the Schwarzschild radius) from the black hole, and we fiushe size of
the active region at this value in most of the simulationse Téleased energy
needs to be transferred to electrons via, e.g., Coulomisiaris with hot pro-
tons, collective plasmdiects, magnetic reconnection, or shocks. We assume that
the energy transfer to the electrons is given by a powerig@etion function
dNe/(dt dy) o v T extending in the Lorentz factor from= 1 to 1¢. To keep
the Thomson optical depth of the electrons associated wittopsz, constant,
the same number of electrons from the equilibrium distrdyuts removed from
the system. In this case, the net powetii§:4—§R3Ne(<y>inj — (¥)egMeC?, Where
(y)inj @and(y)eq are the mean Lorentz factors of the injection function anthef
equilibrium distribution, respectively, ad is uniquely determined by the model
parameters anty)eg.

The injected electrons are cooled by synchrotron emissidrCompton scat-
tering at timescales much shorter than the accretion tintee synchrotron ra-

1The total optical depth might be larger due to the produce plaut for parameters consid-
ered here, the amount of pairs is negligible.
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Figure 9.1: Equilibrium photon spectra (left panel) andceten distributions
(right panel)p?dr/dp (i.e., momentum per log, wherer is the Thomson optical
depth andp = +/y2 -1 is the dimensionless electron momentum) fdfedtent
electron injection sloped’, = 2 (dotted curve), 3 (solid) and 4 (dashed). The
results for the fiducial parameter det= Ly, = 10° erg s*, Iy = 3, 7 = 1.5,

ng = 1, f = 0, are shown by solid curves in both panels. The electron ¢emp
tures and photon spectral indices are given in Table 9.1.

diation is strongly self-absorbed up to hundreds of haresmrand therefore the
cooling depends strongly on the high-energy tail of thetedecdistribution (see
e.g. Wardzihski & Zdziarski 2001). The importance of symtion processes is
determined by the ratigg = UgRéc/Linj, whereUg = B?/(8r) is the magnetic
energy density antlj; ~ 43”R2curad (so thatpg ~ 3/4n ~ 0.25 corresponds to an
equipartition of the magnetic and radiation energy degsitls = U,,q). The seed
photons for Compton upscattering can be provided by thelspton as well as
by the external sources, the cool accretion disk being thet metural one. The
external soft photons are modeled as a blackbody of temperBig determined
from the Stefan-Boltzmann lawgisx = 47rRZJSBT§B. The cooling by external
photons depends on the rafio= Lgisk/Linj. The total escaping photon luminosity
isL= Lgisk + Linj = (1 + f)l—inj-

9.2 Synchrotron self-Compton models

We first assume that the cool disk isfistiently far away and does not sup-
ply any seed soft photons to the inner hot flow. Thus we congdee syn-
chrotron self-Compton (SSC) models<0). We choose the fiducial parameter set
L = Liny = 10°” erg s* andrp=1.5 (typical for the hard state of BHBs, Zdziarski
etal. 1997)R = 3x10’ cm, Ty = 3 (ad hoc), angg =1. The equilibrium electron
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Figure 9.2: Equilibrium photon spectra (left panel) andcelen distributions
(right panel) p?dr/dp for different magnetizations = 0.1 (dotted), 1 (solid),
10 (dashed). The results for the fiducial parameter set amgrshy solid curves.
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Figure 9.3: Equilibrium photon spectra (left panel) andcelen distributions
(right panel)p?dr/dp for different optical depth, = 0.15 (dotted), 15 (solid), 15
(dashed). The results for the fiducial parameter set arershgwolid curves.
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Figure 9.4: Equilibrium photon spectra (left panel) andceten distributions
(right panel)p?dr/dp for different ratios of the external disk photons to the in-
jected powerf = 0,0.1,0.3, 1, 3 (solid, dotted, dashed, dot-dashed, long-dashed
curves, respectively) for constant total luminodity The results for the fiducial
parameter set are shown by solid curves.

distribution consists of a Maxwellian part wikiT, =66 keV and a power-law-like
tail with the slope modified by coolinbe = I'iyj + 1 = 4 (WheredNg/dy o« y'e;
see the solid curve in Figure 9.1(b)). The synchrotron aonss strongly self-
absorbed with only the nonthermal tail aboye> 20 contributing to emission
above the self-absorption energyzatlO eV. As the amount of seed soft (syn-
chrotron) photons is low, the Comptonization spectrumdpoed predominantly
by the thermal electron population) is hard with the photoargy indexa ~ 0.9
and a cut-& at ~ 100 keV, which is similar to the hard state of BHBs. A tail
produced by single-Compton scatterin@j the power-law electron tail is clearly
visible above MeV.

Variation of the slope of the injected electrons leads torgel@hange in the
tail of the electron distribution and dramatidférence in the synchrotron emis-
sion. A soft electron injection witl,; > 4 leads to #icient thermalization and
a small amount of soft photons resulting in rather hard tahaspectra, with the
photon energy index < 0.7 (see dashed curves in Figure 9.1). A hard injec-
tion gives more power to the nonthermal tail and more seedopisdor Comp-
tonization (see also Ghisellini et al. 1998; Wardzinski &zzarski 2001), which
causes a drop in the electron temperature (see the dottegsaarFigure 9.1). A
strong 'bump’ also develops in the tail of the electron disttion aty ~ 3. The
synchrotron emission produced by these electrons is stlhgly self-absorbed,
while the energy losses and gains stay close to each oth@nfextended en-
ergy interval (Katarzyhski et al. 2006). In this regimee tfatio of synchrotron
heating and cooling rates for a power-law distribution datigistic electrons is
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Table 9.1: Results of simulations

p2 Ckb Tec
(keV)
FiduciaF 0.89 66
iy 2 1.07 27
4 0.73 90
B 0.1 0.75 77
10 0.98 64
) 0.15 1.12 160
15 0.58 4
f 0.1 0.97 61
0.3 1.13 49
1 1.61 31
3 2.46 16
Notes.

aVarying parameter and its value.
b Photon spectral index in the 2—10 keV range.
¢ Temperature of the Maxwellian part of the electron distitu
d Fiducial set of parametets= 10%” erg s, R= 3 x 10’ cm,
f = 0,lin = 3,Tp =15rn =1

¥n/ye = 5/(Te + 2)2 Observe that fofe = 3 (i.e. forTiy, = 2) the heating and
cooling rates are balanced, however, such an equilibriumsgable (Rees 1967).
The Comptonized spectrum for hard injectiof = 2 (see Figure 9.1(a)) is much
softer than the hard-state spectra of BHBs, even withoutcanyribution to the
cooling from the disk, strongly constraining the electrojection mechanism in
BHBs.

The dficiency of synchrotron cooling depends on the magnetic fig&hgth
parametrized here via magnetizatiggnn At small g (see Figure 9.2(b)), syn-
chrotron is indicient and cooling is dominated by thermal Comptonization. A
higher normalization of the power-law part of the equililim electron distribution
leads to a stronger MeV tail. Fgg <1 (andl,; > 3), the thermal Comptoniza-
tion spectrum is very stable witla ~ 0.7—0.9. At largejs > 1, the synchrotron
thermalization operates mordieiently and the thermal part of the distribution
persists to higher energies. The increadifield compensates for the decrease
in the power-law tail leading to a higher synchrotron enaissiwhich results in
softening of the Comptonized spectrum.

°This expression can be derived by employing the delta-fancapproximation for syn-
chrotron emissivity to calculate the source function anish@iét in the expression for heating
by self-absorption (see e.g. Ghisellini et al. 1988; Kataski et al. 2006).
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Consider now variations of, for the fixedLi,;. At high 7y, the equilib-
rium electron temperature drops, leaving fewer energégat®ns for synchrotron
emission and, therefore, reducing the number of seed psédoComptonization
(Figure 9.3). This, in turn, results in the harder photorcspeproduced by sat-
urated Comptonization (by thermal electrons) and a weak-hitgergy tail (pro-
duced by nonthermal electrons), very similar to the ultitegmectra of BHBs (see
Figures 8 and 9 in Zdziarski & Gierlihski 2004). At smaltgr the higher electron
temperature leads to a stronger synchrotron cooling andawexr Comptonized
luminosity and, therefore, softer Comptonized spectra.

Let us now apply the developed model to the hard state of Cyig X-he
MeV tail observed there witlyyey ~ 2 (McConnell et al. 2002) constrains the
injection slope to bé’, < 2amey = 4. Then the hard X-ray spectra with <
0.7 and a high-energy cutoat ~ 100 keV (see Figure 9.5) requirg ~ 1 and
low g <0.1 (see also Wardzinski & Zdziarski 2001; McConnell e28l02). Any
additional soft photons from the disk will make the spectsofter, reducings
even more. The low magnetic field rules out magnetic recdioreas the energy
dissipation mechanism. This also implies that electromsctbe thermalized
by the synchrotron self-absorption. On the other hand,dfdize of the active
region iskR ~ 60Rs, Coulomb scattering becomes important (as its influencegro
linearly with size for constarit, see, e.g., Coppi 1999; Svensson 1999), and it can
thermalize electrons at a rather high temperatuteligt~ 100 keV as observed in
Cyg X-1 (Gierlinski et al. 1997; Poutanen 1998).

We reiterate that the whole spectrum here is produced by3kergechanism.
Its thermostatic properties fix the electron temperatu®afi00 keV (forr, ~ 1)
and stabilize the spectral slopenat 0.7-0.9. The feedback from the disk (Haardt
& Maraschi 1993; Haardt et al. 1994, Stern et al. 1995b; Ma&taal. 2001) does
not seem to be needed.

9.3 Spectral transitions and the role of disk photons

The spectral transitions observed in BHBs are most probattpmpanied by a
change in the geometry of the accretion disk. The cool ousir moves toward
the central black hole causing an increasing flux of the duft@ns to the central
hot flow (Esin et al. 1997; Poutanen et al. 1997; Poutanen &Cb@O8), which
we simulate here by increasirfg(see Figure 9.4). Higher soft photon flux leads
to faster Compton cooling and lower equilibrium electromperature, making
the nonthermal part more pronounced. The resulting phatintaition changes
from the hard, thermal Comptonization dominated, spectoitine one dominated
by the disk blackbody, with a nonthermal tail extending tostef MeV, which
becomes harder at highdér The spectral changes triggered by varyih@re

3ADAF-based models also consider SSC as the main cooling anésth; see Narayan et al.
(1998) for the review.
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Figure 9.5: Spectral states of Cyg X-1. Crosses show thddedaspectral data
presented by Zdziarski et al. (2002). The model spectra widrstellar absorp-
tion (described by the column denshtl;) and Compton reflection (described by
the solid angl& and ionization parametér Magdziarz & Zdziarski 1995) taken
into account are shown by the solid curves. The parameterthéohard-state
model arell = 2.7x 10* erg s*, R=18x 1 cm, f = 0, [y = 3.8, 7, = 2.5,

ng = 0.083,Ny = 3x 10?  cm™2, Q/(2r) = 0.2, ¢ = 0. The soft state can be
described byt = 4.85x 10*" erg s*, R = 3.85x 10" cm, f = 2.13,Ty = 2.2,

75 =0.3,75 = 1L.5,Ny = 5x 10 cm2, Q/(271) = 0.7, £ = 100.

similar to the one observed in Cyg X-1 (see Figure 9.5). Aitlstacomparison
with Cyg X-1 spectra shows, however, that other parametesge too.

Compared to the hard state, the soft state corresponds gharftotal lumi-
nosity. The MeV tail is hardetyey ~ 1.6 (McConnell et al. 2002), and therefore
Iinj < 3.2. If the tail of the blackbody at 3—10 keV (see Figure 9.5)risdniced
in the same emission region, it requires a rather hot thepopllation of elec-
trons, which needs highg for the synchrotron thermalization to operate (because
Coulomb thermalization is noffiécient under the conditions of strong Compton
cooling). This would be consistent with the magneticallyrmioated emission re-
gion. Alternatively, there may be additional heating metsims operating. Also
the tail might be a result of Comptonization in the hot ionizkin of the disk,
not directly related to the emission we discuss here, batitherpretation might
not be easily reconciled with the fact that the disk is staale the tail varies
(Churazov et al. 2001). While the dramatic changes in thetrele and photon
distributions between the states are mainly caused bytiwargof the disk lumi-
nosity, it is obvious that other parameters do change dutiegransition. We
stress that none of the presented models requires anyaddithermal heating,
which is diferent from the models of Poutanen & Coppi (1998) and Giskiih
et al. (1999).
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9.4 Conclusions

The hard state of BHBs can well be described by the quasimile8SC mecha-
nism. The feedback from the cool disk is not needed to stailie spectral slope
and the electron temperature. Electrons can be injectdtketadtive region with
the power-law spectrum, but Coulomb scattering and syicdnaelf-absorption
thermalize them feiciently. This reduces the need for mysterious 'thermal-heat
ing’ that was invoked previously to explain thermal Comptation spectra of
BHBs. The MeV tail together with the hard X-ray spectra of BHBith photon
indicesa <0.7 and a cutfd at 100 keV require rather low magnetizatign< 0.1
and a large size dR > 60Rs. In that case, magnetic reconnection can be ruled
out as a source of energy. Similar results we obtained integely by Malzac &
Belmont (2009).

At high optical depth of the emitting regiofy > 10, in the absence of disk
radiation, the spectrum is close to saturated Comptooizgbeaking at a few keV.
This Wien-type spectrum might be associated with the wftasate of BHBSs.
At low T, the electrons are hotter and the spectra are softer due tefitient
synchrotron cooling.

A behavior similar to what is observed during the spectratestransitions
in BHBs can be reproduced by varying the ratio of injected kohinosity and
the power dissipated in the hot phase, which could be caugedrying the ra-
dius of the inner cool disk. The increasing Compton cooliagses dramatic
changes in the electron distribution from almost purelyried to nearly non-
thermal. The photon distribution also changes from quasirhal SSC to the
nonthermal Comptonization of the disk photons. In the stftesof Cyg X-1,
a strong magnetic field can thermalize electrons &tently high temperature,
which is consistent with a magnetically dominated coronadpeesponsible for
the high-energy emission.
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Summary

Understanding the physical conditions as well as the radiaechanisms giv-
ing rise to the broad-band spectra in various astrophysigaices like accret-
ing black holes, relativistic jets in active galaxies andhgaa-ray bursts requires
detailed modeling of particle—photon interactions takitace via diferent pro-
cesses. This is a formidable task for several reasons., Bo#i the particle and
photon energies can span many orders of magnitude. Aside difierent pro-
cesses behavingftierently, a given process can also exhibit significantijedent
behaviour depending of the energy regime. Compton saadgtesithe most promi-
nent example: depending on the partipteoton energies, either the particle or the
photon can gain or lose a negligible or significant fractiébnt® energy in one
scattering, each case requiringtdrent numerical treatment. Secondly, the wide
energy range also means that we have vastigidint timescales in the problem,
which has implications for the stability of the numericahsme. Finally, the ki-
netic equations describing the evolution of particle andtph distributions are
coupled, making the problem non-linear.

We have developed a new computer code for simulations oatiadipro-
cesses in magnetized rarefied plasmas that is able handiéotieenentioned dif-
ficulties. The included processes Compton scatteringgpaduction and annihi-
lation, synchrotron processes and Coulomb scatteringthg&lirelevant rates are
calculated without approximations and are therefore valabspective of the par-
ticle/photon energies. The interaction terms in the kinetic agnatare written in
the form most suitable for the treatment of each processitineg in both integral
and up to second orderftBrential terms in the equations. The resulting coupled
integro-diferential kinetic equations describing time evolution & ghoton and
electroripositron distributions are solved simultaneously. Théusion of second
order diferential terms allows us to treat particle thermalizatigrCompton and
Coulomb scattering as well as synchrotron self-absorption

The employed numerical techniques guarantee energy (atd@avhen rel-
evant) conservation with high accuracy which is especiatiyortant when deal-
ing with strongly self-absorbed synchrotron radiation. eTimplementation of
the Chang and Cooper scheme gives the correct shape of tti@epdrstribu-
tion at low energies. The area of application of the code @raonus as it can
deal with photons and leptons covering many orders of madeiin momentum
space, with no potential fliculty of extending it to even lowgrigher energies.
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We present a number of test runs, where we consider proble®psly solved
by other methods. We compute non-thermal pair cascadestady lepton ther-
malization by synchrotron self-absorption, as well as nholde emission from
the stochastically heated pairs that might have a relabdhe prompt emission
of gamma-ray bursts. We find a good agreement in the pararsegdee where
comparison is feasible while theftérences can be explained by our improved
treatment of microphysics.

We have applied the code to study prompt gamma-ray burstsemi$rom
neutron-loaded flows, in which the relative kinetic enerfiypeutron and proton
flows can be dissipated through nuclear collisions. Thamhsi®n is in the form
of thermal heating as well as high-energy injection of etaci{positron pairs and
takes place over a range of distances from the central sodMedave described a
method of simulating radiative processes in the relatwditzerging outflow with
our one-zone code by considering the evolution of partiol photon distribu-
tions in the comoving frame of the fluid. Adiabatic losseshd# particle as well
as photon distributions (the latter only in the opticallickregime) are taken into
account. A simple method is described to take into accown#ihcts of variable
Doppler boosting as well as opacity in flow elements propagatt diferent an-
gles to the line of sight. Our results are in good agreemetfit thhose obtained by
Monte Carlo methods by Beloborodov (2010).

The spectrum is formed by the combineftieet of thermal and non-thermal
Compton scattering, the seed photons for which are provigethie thermal ra-
diation component advected from the central source. Theathapectral shape
resembles the Band-type spectrum typically observed imgaimay bursts, peak-
ing near 1 MeV. Below the peak, the spectrum is hard and igméted by the
advected thermal component (in the non-magnetized cas®)veithe peak, the
comparable amount of thermal and non-thermal dissipagaadd to relatively
smooth Comptonized spectrum. At the highest energies éabeveral GeV) the
spectral shape is determined by saturated pair cascadeh \eads to steepen-
ing by unity in photon index relative to lower energies. Op tj the otherwise
smooth spectrum, the model predicts a Lorentz boosted ietion feature at a
couple of 100 MeV. In principle, this constitutes a well-defil observational test.
However, in reality the detection of such feature might peraifficult due to the
limited photon statistics at these energies.

The introduction of a magnetic field has two malteets: it softens the spec-
trum below the peak, and it introduces an additional pdytself-absorbed syn-
chrotron component at lower energies. The softer spectyatrbe easier to rec-
oncile with “typical” observed spectral hardnesses, wasneure thermal emis-
sion tends to be too hard even when accounting for softeniegtal large-angle
emission. The low-energy synchrotron component could wuctor the X-ray
excesses that have been observed in some bursts. Furthana¢iom of the mag-
netized model is currently underway.

We have also applied the code to study the radiative meainanissponsible
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for different spectral states of black hole X-ray binaries, usinmale two-phase
disk-corona model. We find that that thermalizing proceBkesynchrotron self-
absorption and Coulomb scattering can play an importastirotietermining the
spectral shape. This especially applies to the hard stdterendticient Coulomb
thermalization can lead to quasi-thermal Comptonized tspexven for purely
non-thermal (power-law) electron injection. The wholectpan in this state can
be produced by the synchrotron self-Compton mechanisnmowitthe need for
soft photons from the accretion disk.

Increasing the amount of soft radiation that enters thev@ctgion leads to
stronger cooling of the electrons and a transition to a pdawrdominated (soft)
state, which is consistent with the decreasing inner radiube accretion disk
bringing about the spectral state transition.
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Appendix A

Compton scattering

A.1 Functionss; and S

All functions s; and S; defined in Chapter 1 can be expanded to series, which
converge in the regiofi < 1/2. It is easy to show that

S© =) an(-28"  Si©) =) An(-28)", (A1)
n=0 n=0
where
= § n+2+ 2 + 8 16
dn = 3 n+l1 n+2 n+3|
1 24 1,5
an = 3 n(n+5)+m i a2n:3—2(n +9n +22n+32). (A.2)

Using equations (1.48), one can obtain the expressionshéorcodficients A

Table A.1: Codicientsa;, andAj,.

n 0 1 2
aon 1 1 1310
ain 1 32 4720
o 1 2 154

An 1 2710 14740
Ay 6/5 5320 15935
Asn 1 145 47/8
Ay T7/5 225 34135
Asn 15 2 40370
Asn /10 15 207280
An 310 3I5 281280
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througha:

Ain=2@1n1 — An+1)s  Aon=2A1ni1 —ane1)s Asn = 2 (2ne1 — @1ne1),
A4n =2 (A3n+1 - Aln+1), A5n = 3A4n - 4A3n, A?n = A3n - A4n/2,
A6n = a2n - 3A7n. (A.3)

The codficients forn = 0, 1, 2 are presented in Table A.1.

A.2 Auxiliary functions yi; and ¥;;

The total cross-section and mean powers of energy of sedtf@rotons are ex-
pressed through the functions of one variable

i+1 i . 1 d
0ile) = Gx f As9de i>-1 pa©= f 1 - 5,091,

\P”-(a:ig—j f X S;(x) dx. (A.4)

Calculations of functiong;; involve integrals of the following types:

fdxx"‘ln(1+2x), fdx(1+x—nzx)" g(g):fln(1+2x) d?x (A.5)

wherem = -1,0,1,2, 3 andn,| = 1,2, 3,4. All integrals are elementary except
g(¢), which is described in details in Appendix A.3.
The explicit expressions for the functiopns are the following:

4 2 3 3 2 11
vl = |+ 2 (00 2- 2 - )i are- T
7T 2 2
Uo1a(®) = 8§[3 22 [or 2)e-ar-r]

W_1o(8) = Fg[lh 161, - 7R - 3R - R,

91’00(5):3[9(5)—? (}‘FE‘FE)'@*—}&—E’]’

7RI A=] K A
bor®) = 8§E_% 3-55)i-3R-3R| A6)
lﬁoz(f)—@ T ol R SRR,
b0 = 73 (€45 + 2l - 4- £+ R~ 2016)|
0© = 7|6+ 463 (3 gl - e+ OR|,
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1
ZEOE io¢: |2 S +96-41-Ro+ 3R,
vald) = 5 53 |25¢ + (267 - 8£ - 5) I + £ R - 89(#)]
3 1 2
Ya1(€) = 8 [g(f) —fz— 56~ Z'f—%Rfs],
3
vald) = g7z 5|96 -8£+51: - £(2+ 11 + 106) R, (A.6)
3 31 31 3
Yso(€) = 1285 [% + 352 (25 667 — 12¢ - E) le - vt er]
1
valé) = 5 5 |[16¢° - 2727 - 45¢ + 3(7+ 126) | + 3¢ (1+ 3) RE|
vaalé) = 1654 [667-4¢% + 56 -3l + £ (1+ 46 + 269 R
15 230 23 17 32
Yao(é) 12825 [54 + 753 + gfz —gct (454 - 1667 + —) e+ & Rf] ,
5
val®) = g1z |86% — 1257 - 9% + 8£ + 3(46° - 1) I - £+ B R
5 32 11
Yaa(€) = 25685 18" - 353 + 1067 - 12¢ + > e + & (1+7& + 148 RE] ,

wherel; = In(1 + 2¢) andRe = 1/(1 + 2¢).

The explicit expressions foF;; can be obtained using definitions (1.48) for
Sj:

W11 =2 (Yoo — Yo1)/é, W13 =2 (o1 — Yo2) /€,

Wia=22) 11— Y 10— ¥-12)/é, W16 = ¥12— 3V13+3%14/2,

Wo1 = 3 (10— Y11)/ 2%, Wo2 = 3 (Y11 — Y11)/ 2,

Wo3 = 3 (Y11 — Y12)/ 2¢, Waq =3 (V11— Y13)/ 2,
Wos = 3Wo, — 4Wys, W = 2o — 3Wo3 + 3W24/2,

Wa1 =4 (20— Y21)/ 3,
Waz =4 (Y21 — ¥22)/ 3,
W35 = 3W3s— 4Was,
W36 = 32 — 3¥37,

Wi = 5 (a1 — Y1)/ 4¢,
Was =5 Wa1 — Wa3) /4,

Wy7 = Waz — Yas/2,

Ws4 = 6 (Va1 — Wa3)/5€,

War = 4 (o1 — Y1)/ 3¢,
Wiy = 4 (Va1 — W23)/ 3¢,

W37 = W3z — W34/2,
W1 =5 (W30 — ¥31) /4L,

Wiz = 5 (Y31 — ¥32) /4L,

Was = 3Waa — 4Wy3,

Ws1 = 6 (Y40 — Ya1)/5¢,
W57 = 6 (a1 — Ya2)/ 56 — Wsa/ 2.

(A.7)
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In these formulae the argumefiis omitted. For complete evaluation of these
functions we need to compute 18férent functionsg;; given above.

To prevent the loss of accuracydfis very small, we can use the series ex-
pansions (see Nagirner & Poutanen 1994) that directlyvioftom the definitions
(A.4) and Taylor expansions (A.1):

i+l N o
i) = Za,n(— o' 1> -1 @) = Zoa, (28—
(A.8)
a 1+1
¥ii(6) = ZA,n( 28— (A.9)
with a;, andAj, given by equations (A.2) and (A.3), respectively.
A.3 Auxiliary function g(¢)
Calculations of functiow;; from Appendix A.2 involve integral
g(é) = f In(1+ 2x) % (A.10)
0

We repeat here for completeness the method of calculatiotmssantegral from
Nagirner & Poutanen (1994). It is possible to write a relati@tween the values

of this function oné < 1/2 andé > 1/2. Let us define for that the auxiliary
function foré <1

0@ =9e2)= [ @y (A1)
It can be presented by series
i(—l)”‘lf—z ife<é <1,
o= +In2 In§+z( _f)k+2kz+1: ife, <&<1 a3
2mm *F=5 ="
As &, we can take 0.8 — 0.9. Then
g*(2§) if0<¢<1/2
gé) = 71} if&=1/2, (A.13)

5+ |n2(2§) 0.(1/2¢) if £>1/2.
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A.4  Asymptotic expansions of functionsy;, and Aj,
in the Thomson limit

Using Taylor expansion (A.8) of functions, for small arguments, it is easy to
get an expansion of functions, in the Thomson limixy <« 1:

Xon(%7) =" ) (=2x9) 80 ks (A.14)
1=0
where
(1 +,8)|+1 _ (1 —,8)|+1 int(l/2) |!,82k
“= 28(1+ 1) ~ 41 2k+1)I(-2K)
_(1+P)' < 1
" 71 2 A AP (A15)

and int§) is the integer part ox. A few first functions are
1 2 2 2 1 4
K]_:l, K2:1+§ﬁ, K3:1+ﬁ, K4:1+2,8 +§ﬁ, (A16)
10 1
ks =1+ 3,82+,84, ke =1+58%+38% + 7,86, k7 =1+ 76%+78* + S°.
The first three terms of the expansion (A.14) are as followsncEon Agg

coincides withygg, and functionsAg; and Ao, can be obtained using definitions
(1.27) and expansion (A.14). Fap,, we get

- 78
Ao1= —,BZ(—ZXV)I%QH ~ —'g [1—4X7+ g(xi’)z(l"‘%z) ; (A.17)
1=0
where
fo KK M kr2 Lo N
T T 4 @&+ (-1-20
— } - g =1+ 1- 2 - ﬂ' + ﬂ' 2
41_3’ 42_35 §3_ 555 §4_3 Sﬁa
5 1 6
=3 26% + ?34, lo=2+48"+ ?34- (A.18)

Respectively forg,, we have

- 4 39
Aoz = 3 Z (—2xy)' ag Ais1 ~ —1—5,32(X7) (1 - gXV), (A.19)
=)
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where
A= 1 3k = 2K+ K2 | mil/‘j) I! 2k D
T 32 AT LI 2012KT 2k + D)2+ 3) ’
2 2 4 4,
= = — = = = = gl . A2
A1 =0, A 15 A3 3 Vi st 35/3 (A.20)

Similarly, for functionsy1,, using expansions (A.9) we get:

xan(%7) = 9" DT (29) (v Ay + XAa) knaisa
=0

- Aol
= 7n 72K2+n + Z(_2X7)| (')’2 Al Knslv2 — %Knﬂﬂ)] . (A.21)
=1

FunctionsAy, can then be obtained using definitions (1.50):

Xy

: (422 - 27- 287,

4
Ao=x10~1+ §p2—

nd 2
A1 = —DZ(—ZX)’)I (y Ay + XA) G2 = —,3{57’2 -7 [2172(1 +B°/5) - 4]}
0

5
N I 2 ol 2 Xy 2

Agp = p,BZ(—ZXY) O Au+ XAz) Az ~ 787 |7" — ?(21)/ -2)|. (A22)
1=0

For functionsy,,, we can write the expansion

XZn(X, 7) = ,yn Z (_ny)l [(74A4I - 72A7I) Kn+l+3 — 72A5I Kn+l+2 + Agl Kn+|+l]
1=0
7 2 1
~ 7” [g'}’4k3+n - 1/_0(3/(3+n + 2K2+n) + 1_0K1+n] s (A23)

where we kept only the zeroth term ¥y of the series. Expansions fa, can
then be obtained using definitions (1.50):

2 , 2
Azo = x20 ® 1+1—5p (217 +4),

Ap = - Z(—ZXy)' [(74A4| - 72A7|) li3 = ¥Y*Re Giva + P §|+1]
=0

~
~ N

1+ 7—25p2 (63y° + 34)

App = p? i(—ny)' [(7’4A4| - 7’2A7|) Az = Y*As Az + A A|+1]
=0

~ p27—15 (422 - 11). (A.24)
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Let us now discuss the properties of functiqris The series expansion can
be easily obtained from the definition (1.89) and series)A.9

Xin(%Y) = Y2 (=2x9) Au Knitis. (A.25)
1=0

For A}, we get:

Ay = X10272(1+,32),
Ay = —yp ) (-2x9) Audia ~ —yp(1+5°/5),
1=0
— 2
A, = P2 (=2xy) Ay Aps ~ =p2. A.26
12 p;( Xy) A Ajss 5p ( )

The series expansion for functiogy is:

n+1
Xf;](X, y) = )/p Z(_ZX')/)IAlI (Kn+l+2 - 272 Kn+l+3 + 72Kn+l+4)
=0
2 (o9
= §’yn+lp2(_zx'y)lAll (ﬁZAn+I+2 - Kn+|+2) . (A27)
1=0
For Aj, we get:
1 1, 1 2
Ay = X107~ —§7p(1 +°/5), (A.28)

1 1., 2
A = 20 (nx10—x11) = §p2 Z(—ZXV)I Ay [Anz = Ais + o] » 1—5p2.
=0

A.5 Eliminating cancellations in redistribution func-
tions

If formulae (1.138), (1.139) and (1.140) are used as thaydstaumerical can-
cellations appear at certain regions of parameter spaaeeXample ifx and x;
are small, the quantities anda,, 1/a_ and Ya,, are close to each other. Also
a combination containing a sum df/a® andd, /a3 minus double the dierence
1/a_ and Ya, has a cancellation. Therefore it is useful to rewrite theresp
sions in a form not containing those cancellations. The elfattons appearing in
(1.138) were dealt with in Nagirner & Poutanen (1993). Deiini

(X x) 2y + X - %)

u= -a , V=aa, A.29
a, P a, (A.29)
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they got
2 u 2 (u? — Q?)(U? + 5v) Q?
Using definitions (A.29), we get from (1.139) and (1.140)
B 2u 1 2\ (WP-QAE+3v) @
RZ = (a_ + a*_) & + \_/ (1 - a) + 2q2V3 + q2V2 , (A31)
_ 1w ST R T
Rq = 208 [u (u +4v)+2b]+2Q(1 q)+ o (A.32)

Another loss of accuracy occurs in tiie- Q? term, wheny is close toy, (X, Xy, 1).
We can use the following formulae (Nagirner & Poutanen 1993)

UW—-Q>=2rqCDy, Dy=(y+ X — X+ 7))y —7.),
C=2/[y(y+ X1 — X) + T + XXu + V]. (A.33)

A.6 Boundaries

The redistribution function®,, Rz, Ry and Ry, R, are defined within the inter-
val of photon and electron energies and scattering angtesysag the relation
|cosd| < 1, where cog is given by equation (1.107). These limits were discussed
in Nagirner & Poutanen (1994), but we repeat them here forptet@ness. For
fixed photon energies and scattering angle, we already gdintiits on the elec-
tron energies given by equation (1.118)> v.(X, X, u). If we are interested in
the interval of scattered photon energies for the fixgds andu, we have then

X~ < X < X', where

p+y(y +x)(L-p) £ p(l-p) a (A.34)

XE(Xq, v, 1) = X
O =X e () + 2 (1 )

If the energy of the scattered photans fixed, the initial photorx, lies in the
interval _

XISX_lsx{ !fOSX(l—,u)S)/—p, (A.35)
Xp > X; ify—p<x@-pw<y+p

where

pryy-XA-ppl-pa
: A.36
-2y x(L—10 + % (1— 102 (A30)
In equations (A.34) and (A.36), the quantiteesare defined by equations (1.119).
If X — X1] < 2xxq, the quantityy.(X, X1, u) as a function of: has a minimum

Xt (X y, 1) = X

Ymin = L+ (X = X1 + [X = Xq[)/2 (A.37)

atu = umin = 1 — [X — Xq|/XXq, While in the opposite case — x| > 2xXy, the
function is monotonic with the minimum reached at the boupda= -1 (see
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Figure A.1). Correspondingly, the limits of variationsiotiepend on the photon
energie, x; and the electron energyand are given by

fim S p S (A.38)
where
=1 if X = Xa| > 2X %4,
pm(% X1, y) = { =1 if[x= x| <2xx andy = y.(x X1, -1),
po i X = X| < 2XX1 andymin < ¥ < y.(X X1, —1),
q.
-(Xx,y) = 1-—~, A.39
H-(X, X1,7y) v ( )
a- (X — %q)?
X’ X 9 = 1 —_—— = 1 _—_—
e (X X1, %) v —
and
=P +y0a-£p Vi +x-x?-1 (A.40)

The quantityy.(X, X3, —1) is the minimum electron energy needed to scatter a
photon backwards (i.e« = —1) from x; to X:

V(X X, -1) = [x =X+ (X+X)V1+ 1/xx1] /2. (A.41)

For the angle-averaged redistribution function, the lolweit on the electron
energy is:
V(X X1, =1) 0 [X = Xq| = 2XXq,

. (A.42)
Ymin if X=X <2XXg.

)/*(X’ Xl) = {

The limits of variation of the scattered photon enexggs a function of incident
photon energy; andy can be found by inverting equation (A.42). We obtain

X (X1, 7) < X< Xm(X1,7), (A.43)

where

2

2X
-1 ifl<y<1l L andx < 1/2,
Y+ X <y< +1—2X1 1<1/

_ 2x2
X(a.y) i1+ 21)(1 <yandx < 1/2,
v+ X —1 if X >1/2,
Xt(y+=p)/(yFp+2x). (A.44)

Xm(X1,y)

Xi(xl’ 7)
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2.0 I
1
)
1.5F ,
=~ . /
» “~~§__~ ...... /
1.0_--1---r"'|"'|""|'”|.”.| S e T SR I I’/I L
-1.0 -0.5 0.0 0.5 1.0

H

Figure A.1: The dependence of the functiarix, x;, u) onu. The energy of the
incident photon is; = 2. The solid curve is fox = 3, the dashed curve is for
x = 1 (both cases correspond¥e-x;| < 2xx;), and the dotted curve is for= 0.3
(for which|x — xq| > 2xxy).
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A.7 Relation between the Compton redistribution
functions for photons and electrons

The redistribution functions defined by equations (5.18) @n26) can be written
as

— 1
Ron(X, X1,y1) = @plfpdyd2Q5(y1+x1—y—x)fdzledzwlF(S(pl+x1—p—x),
(A.45)

Re(y, 1, X1) = 4—71sz1fxdxd2w5(yl+x1—y—x)fdzledzwlFé(pl+x1—p—x).
(A.46)
We see that the inner integrals are identical in both expmress Because of ro-
tational symmetry, the only angle left in the calculatioteaperforming the in-
tegrals overd?Q,d?w; is the angle between the momenta of outgoing particles.
Therefore we can write?Q = d?w = 2rdZ, where? = Q - w. We also see that
dy 6(y1 + Xg —y — X) = dxd(y1 + X1 —y — X), so we find from equations (A.45)
and (A.46) that the redistribution functions are related as

pplﬁew, Y1, X1) = Xxlﬁph(X, X1, Y1), (A.47)

where one of the energi@somenta has to be replaced from the conditiany =
X1+ 71

A.8 Isotropic Compton redistribution function

The isotropic Compton redistribution function defined iuation (5.18) can be
written as an integral over the scattering angle (Nagirn&uofitanen 1994)

H+

_ o+
Ron(%, X0, 71) = f ROCX v ) i = Toxyn) | . (A48)

Hm Hm

The limits of integration are given by equations (A.39) irctsen A.6, withy
substituted byy;.

The angle-dependent redistribution functiR(x, Xy, y1, 1) was first derived by
Aharonian & Atoyan (1981), see also Prasad et al. (1986) agirNer & Pouta-
nen (1993). Similar functions for anisotropic electronsevaerived in Chapter 1.
The angle-averaged function was obtained by Jones (1968h® presented ex-
pressions are very cumbersome and the loss of accuracysdoecigmall photon
energies and large electron energies. An alternativeifumgiven by Brinkmann
(1984) and Nagirner & Poutanen (1994) does ndiiesidrom these problems. We
use here the latter expressions. The primitive funcii¢r x,, y;, 4) can be ex-
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pressed through functions of one argument as

T(X X1, y1, 1) = Q \/7{—H0+W(1+L)Hl

H
' A(h_)A(h+) [ * 22 %(ZW = (X=X1) )]}, (A.49)

wherew = 1 -z andQ = +/(x - x1)? + 2xx;w. The functionsH are given by the
differences

H=AM)-A®h,), Hy=Ah)-Anh,), (A.50)
where
Ah) = Vi+h — h =[(n+x)’-1w2  h =[(y1-%°-1w/2
(A.51)

The zeroth functio is

In(vh+ v1+h)/vh ifh>0,
Ao = | v (A52)
arcsin(v-h)/ v-=h if h<O,
while the others can be expressed through its derivatives as
|2n 1
Al = (-2 G AY(h), (A53)
and can be computed by the recurrent relation
1 2n - 1 1
or for |h| < 1 via series
|2n - 1] (2n+2k— 1)1 (=h)k
= : A.
Anlh ~ (2n- 1t £ Z 2k 2n+2k+1 (A-55)

Direct computations using (A.50) lead to numerical camatlhs at small photon
energiesx, x; < 1. Nagirner & Poutanen (1994) describe in details how they
should be dealt with.

A.9 Moments of the Compton redistribution func-
tion

The moments of the photon redistribution function given Quation (6.32) can
be written explicitly using equation (5.14) as

— 3 3 3
500 1y | oo AR, (A5
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where we have denoted = 6(p +X; — p—X) for brevity. We now define (Nagirner
& Poutanen 1994)

i _ 31 d3X1d3p1 | 4

00 %) = jar7 [ SR o (A57)
and

B = g [ #0000, (A.59)

where¢ = p- x. Using equations (A.57) and (A.58), we get for equation 6).5

— 2
X S(X) = 4n
! 2N,
Analytical expressions fo¥; along with asymptotic formulae for filerent lim-
iting cases can be found in Nagirner & Poutanen (1994). Houtaing X, and
Dpn(X) using equations (6.33) we need terms lke— x)' So(x), fori = 1,2, which
are simply

X f () P2 dp¥i(x, 7). (A59)

(0020 = 4rsx [ AP PPp (¥ - o), (A.60)

c've

S 2 N
(o= = 4o [ Ap) FPdp (¥ - 20+ o). (A6L)
c've

We now rewrite the moments of the electron redistributiamction given by
equation (6.17) using equation (5.22)

—_ 3 2 1 (dxdPxdp
T 16BNy J X xl =71 n(0 F 6% (A.62)
p

We can define quantities analogous to equations (A.57) ar&BjA
31 d3X1 d3

i P1 4
= - Fo A.63
(rp) S(¢) 167 ¢ X 7 Y1 ( )
and

D(19) = g | Fo £GD . (A62)

Equation (A.62) then takes the form
%) =4z [ Al dx (), (A65)

/lchh
while the terms needed for calculatipgandDe(y) using equation (6.21) are
G = drs—y [ Pl ¥ (0 - 00) (A66)

/lchh
Or= PSP = dr oy [ P9 ¥ (0 — 201 + @), (A7)

2N
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From considerations of energy conservation one would éxeelation be-
tween the rates (A.60), (A.61) and (A.66), (A.67). To ses,tbonsider the quan-
tities x (W1 — W) andy (@, — @) entering equations (A.60) and (A.66):

1
X(¥1—Yo) = Ay fsz & (X1 = X)0(é), (A.68)
where 3 1 d3x1 &, )
<X1_X>SO(§)_EE % (X1 = Xx) Fo" (A.69)
Analogously for electrons
1
y@1-00) = 7 [ F £ 0n-7) %06, (A.70)
d3X1 d3p1 4
(y1—7)sé) = EE — M-y Fod. (A.71)

Due to the energy conservatlﬁffunctlon, X1 — X =y — y1, and we thus get

(X1 = X) (&) = ~(y1 — ) So(é). (A.72)

Also, after performing the integrals ovetx; d3p, in equations (A.69) and (A.71)
the only remaining angle thak; — X)S(¢) and(y; — v)S(£) can depend on is
the one between the incoming photon and electron momentxefdre in equa-
tions (A.68) and (A.70) we can wri#?Q = d?w = 2rd/, £ = Q - w and conclude
that

X(¥1 = Yo) = =y (D1 — Do) (A.73)

Using the same arguments one can show that
X2 (¥, — 291 + ¥o) = y? (D — 201 + Dy). (A.74)

We can thus use the analytic expressions¥ofor calculating the rateg. and
De(y) for electrons as well as photons. Note that silge= @, we also have
analytic expressions for calculating the total scattedrags-section for electrons
through equation (A.65), setting= 0.
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