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Abstract

A variety of different classes of astrophysical sources exhibit spectra that span
many orders of magnitude in photon energy, ranging from radio wavelengths to
high-energy gamma-rays. Such objects can often be associated with a compact
object (black hole or a neutron star) and include relativistic jets from active galax-
ies, gamma-ray bursts, accreting black holes and neutron stars in X-ray binaries
etc. The formation of the broad-band spectrum typically takes place in hot plasma
through different processes like synchrotron radiation, inverse Compton scatter-
ing, photon–photon pair production. Understanding the physical conditions in
these objects requires detailed modeling of the particle–photon interactions.

Numerical simulations of radiative processes in magnetized compact sources
are complicated because both particle and photon distributions span several orders
of magnitude in energy, the distributions strongly depend on each other, the ra-
diative processes behave significantly differently depending on the energy regime,
and, finally, due to the enormous difference in the time-scales of the processes. We
have developed a novel computer code for time-dependent simulations that over-
comes these problems. The processes taken into account are Compton scattering,
electron–positron pair production and annihilation, Coulomb scattering as well as
synchrotron emission and absorption. The relevant kineticequations are discussed
in detail. Analytic expressions for the rates of all included physical processes
are calculated without approximations. We solve coupled integro-differential ki-
netic equations for photons and electrons/positrons without any limitations on the
photon and lepton energies. A numerical scheme is proposed to guarantee en-
ergy conservation when dealing with synchrotron processesin electron and pho-
ton equations. The code is tested using several problems described previously
in the literature. Good agreement with previous works is found in the parame-
ter regimes where comparison is feasible, with the differences attributable to our
improved treatment of the microphysics.

We apply the code to study two different astrophysical problems: prompt
gamma-ray burst emission from neutron-loaded flows and spectral states of black
hole X-ray binaries.

Nuclear collisions in neutron-loaded gamma-ray burst outflows can dissipate a
significant fraction of the flow energy, resulting in heatingas well as high-energy
injection of electron–positron pairs. We use our time-dependent code to self-
consistently follow the evolution of particle and photon distributions along the
flow and find that the emerging Comptonized spectra resemble those typically
observed in gamma-ray bursts, peaking close to 1 MeV. Hard observed spectra
below the peak that present a problem to (synchrotron) shockmodels are easily
reproduced. The high-energy spectrum extends to several GeV without a cutoff.
Magnetization of the flow will lead to softer spectra peakingat somewhat lower
energies. An additional synchrotron spectral component below ∼ 50 keV (soft
excess) is also produced.
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We discuss the origin of dramatically different electron distributions respon-
sible for Comptonization in black hole X-ray binaries in their various states. In
the absence of external soft photons, the electrons are efficiently thermalized by
synchrotron self-absorption and Coulomb scattering even for pure non-thermal
electron injection. The resulting quasi-thermal synchrotron self-Compton spec-
tra have very stable slopes and electron temperatures similar to the hard states
of black hole binaries. The observed hard X-ray spectral slopes, the cutoff at 100
keV, and the MeV tail together require low magnetic fields ruling out the magnetic
dissipation mechanism. The motion of the accretion disk towards the black hole
results in larger Compton cooling and lower equilibrium electron temperature.
Our self-consistent simulations show that in this case bothelectron and photon
distributions attain a power-law-dominated shape similarto what is observed in
the soft state. The electron distribution in the Cyg X-1 softstate might require a
strong magnetic field, being consistent with the magnetically-dominated corona.
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Introduction

Spectral energy distributions of a number of compact, magnetized, high-energy
sources such as relativistic jets from active galaxies, gamma-ray bursts, black hole
accretion disk–coronae are strongly affected and shaped by Compton scattering,
synchrotron radiation and electron–positron pair production (see e.g. Gierliński
et al. 1999; Ghisellini et al. 2002; Zdziarski & Gierliński2004; Stern & Poutanen
2004). Understanding the physical conditions in these sources requires detailed
modeling of the interactions between the particles and photons, which is not an
easy task. The basic problem is that we cannot compute radiative processes from a
given a priori lepton distribution (e.g. Maxwellian or a power-law), because it de-
pends strongly on the radiation field, which in its turn is determined by the particle
distribution. Another problem is that the time-scales for various processes differ
by orders of magnitude. The energy range of particles and photons responsible
for the emission also spans many orders of magnitude, with different processes
making dominant contributions to the emergent spectrum in different bands. One
of the main difficulties in calculating radiative processes over a wide range of en-
ergies is that a particular radiative process may behave significantly differently
depending on the energy regime, the most well-known exampleof such processes
being also the most important in relativistic plasma, namely Compton scattering.
Depending on the energies of the interacting particles, an electron or a photon can
lose (or gain) a significant or negligible fraction of its initial energy in one scat-
tering. The former case has to be accounted for by the integral scattering terms in
the kinetic equations, while the latter necessitates the Fokker-Planck treatment.

The treatment of radiative processes in relativistic plasmas has been the sub-
ject of several works. There are two basic approaches: MonteCarlo methods (e.g.
Stern et al. 1995a; Pilla & Shaham 1997) and solving the relevant kinetic equa-
tions (e.g. Lightman & Zdziarski 1987; Coppi 1992, 1999; Nayakshin & Melia
1998; Pe’er & Waxman 2005; Belmont et al. 2008). Both have their own ad-
vantages and disadvantages. Monte Carlo treatment makes iteasy to take into
account radiative transfer effects, on the other hand it usually suffers from poor
photon statistics at high energies. Another problem can arise at very low energies,
where the optical thickness to synchrotron absorption can be enormous. In the
kinetic theory approach photon statistics is not an issue, the sole difficulty lies in
solving the relevant integro-differential equations. In this work we have chosen to
follow the second approach.

1



2 INTRODUCTION

Due to the difficulties in solving the exact Boltzmann equations of the kinetic
theory, different simplifying approximations have been made in earlierworks.
They fall in three basic categories: ad hoc assumptions about the particle energy
distributions, approximate treatment of different physical processes, and simpli-
fied treatment of radiative transport. Various approximations invoked to simplify
the treatment of radiative processes at the same time limit the range of their appli-
cability. One commonly employed approximation concerns Compton scattering,
which is assumed to take place in the Thomson regime (e.g. Ghisellini et al. 1998)
and is accounted for by a simple cooling term in the electron equation. This sets
two restrictions that the photon energy in the electron restframe is smaller than the
electron rest energy and the average photon energy is much lower than the electron
kinetic energy. Otherwise all photons would not contributeto electron cooling, the
higher energy ones being downscattered via Compton scattering. This means that
one is unable to treat cases when Comptonization approachessaturation, which
may be relevant at high compactnesses, and to study electronheating by exter-
nal radiation. Other works account for Klein-Nishina corrections to the electron
cooling rate, but still neglect the diffusive nature of the process when electron
and photon energies are comparable (Coppi 1992; Moderski etal. 2005; Pe’er
& Waxman 2005), which works towards establishing an equilibrium Maxwellian
distribution. Another useful approximation, when the integral terms describing
Compton scattering are accounted for, is to consider ultrarelativistic electrons and
very low energy photons (e.g. Zdziarski 1988; Moderski et al. 2005). This, how-
ever, becomes increasingly inaccurate when the electrons cool to sufficiently low
energies.

The cyclo-synchrotron process also exhibits qualitatively different behavior
depending on the energy of the radiating particles. If the emitting particles are
relativistic, the emission spectrum is smooth and can span several orders of mag-
nitude in energy, while in the non-relativistic case the energy is radiated at discrete
cyclotron harmonics and most of this radiation might be strongly self-absorbed.
In the first case, the radiating particle (electron or positron) mostly loses its energy
in a continuous fashion, while in the second case it can gain energy by absorbing
the cyclo-synchrotron photons emitted by other particles.This process is a dom-
inant particle thermalization mechanism in compact magnetized sources (Ghis-
ellini et al. 1988). Its proper account requires accurate emissivities in the tran-
srelativistic regime, because electron thermalization usually takes place at mildly
relativistic energies. Some codes for computing radiativeprocesses in relativistic
plasma (e.g.eqpair described in Coppi 1992, 1999) neglect this process com-
pletely as the electrons areassumed to be thermal at low energies or account for
thermalization by Coulomb collisions only (Nayakshin & Melia 1998). In other
approaches synchrotron thermalization is computed (Ghisellini et al. 1998), but
Compton scattering is then considered only approximately.

Owing to the fact that proper treatment of transport processes for all types of
particles would make the task prohibitively difficult, and partly due to our igno-
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rance of the exact geometry of the problem, it is rather common practice to neglect
radiative transport altogether (e.g. Lightman & Zdziarski1987; Coppi 1992) and
assume spatially homogeneous and isotropic particle distributions. In this case
particle and photon loss from the system is modeled in terms of simple escape
probabilities. We also follow this approach here.

The main purpose of this project has been to develop a new numerical code
that can overcome the aforementioned difficulties and accurately treat the evo-
lution of particle and photon distributions in relativistic plasmas interacting via
Compton scattering, synchrotron emission and absorption,electron-positron pair
production and annihilation as well as Coulomb scattering.No approximations
have been made regarding the treatment of physical processes, thus the code can
handle a practically unlimited range of particle/photon energies. The code can
treat particle thermalization by synchrotron self-absorption, Coulomb (Møller)
scattering as well as Compton scattering. It can also handlepair-cascades irre-
spective of their type (for classification of pair cascades,see Svensson 1987).
Good energy conservation, wide energy range as well as the inclusion of all the
most important radiative processes in hot plasma make the code applicable to a
large variety of astrophysical phenomena, two of which are considered in this
work.

The thesis is divided into three parts. In Part I we consider separately all
the included physical processes. Starting from the generalform of the kinetic
equations for electrons, positrons and photons, we rewritethem for each process in
a form that is directly “usable”, which depends on the peculiarities of a particular
process. As a result, the resulting kinetic equations will contain both integral
and up to second-order differential terms, accounting for both discrete as well
as continuous energy exchange mechanisms. The inclusion ofsecond-derivative
terms also enables us to treat diffusion in energy space and consequently particle
thermalization. We derive exact explicit expressions for all the relevant rates,
cross-sections, emissivities etc., without limitations on the particles’ energies.

In Part II we describe in detail the numerical code that solves the coupled
integro-differential kinetic equations describing time evolution of the photon and
lepton distributions. The numerical scheme was developed with two main goals in
mind: accurate energy conservation and relaxation to correct equilibrium distribu-
tions. The former goal necessitates special care for some processes. For example,
extreme caution has to be taken when dealing with synchrotron self-absorption,
because of cancellation of large, almost equal terms, whichcan result in inac-
curacies and huge energy sinks. Also, accurate treatment ofCompton scattering
requires the substitution of Fokker-Planck differential terms instead of integral
terms in regimes where the energy gain/loss in a single scattering becomes small
compared to the energy bin size. The coefficients in the Fokker-Planck equation
in this case are computed exactly from the moments of the integral equation, en-
suring energy conservation. Numerical simulations show that our code conserves
energy with about 1% accuracy. We present an extensive testing of the code using
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some problems described previously in the literature. Processes involving brems-
strahlung can be easily added to the code, while for the conditions considered in
this work, they are not important.

In Part III we consider two astrophysical problems where thekinetic code
finds its application. First, we study radiative processes in relativistic diverging
outflows under conditions characteristic of gamma-ray bursts. This is done in the
framework of a so-called neutron-loaded fireball model (Beloborodov 2010). An
initially optically thick radiation-dominated flow accelerates to relativistic veloci-
ties at the expense of its internal energy. At a certain radius the proton and neutron
components of the flow decouple, which can lead two embedded flows with dif-
ferent Lorentz factors. Nuclear collisions in such compound flows can dissipate
a significant fraction of the total flow energy. Detailed numerical modeling of
radiative processes in these flows lead to prompt emission spectra resembling the
Band spectrum (Band et al. 1993), with hard low-energy slopes. Significant GeV
emission is also predicted, along with a Lorentz-boosted annihilation line.

As another application we study the radiative mechanisms giving rise to differ-
ent spectral states in black hole X-ray binaries. We discussthe origin of the dra-
matically different distributions of the Comptonizing electrons in various states.
Studying the interplay between electron thermalization and radiative cooling lends
support to the scenario in which spectral state transitionsare the result of a vari-
able amount of soft photons entering the active region from the cool accretion
disk, associated with a changing inner disk radius.
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Chapter 1

Theory of Compton scattering by
anisotropic electrons

1.1 Introduction

Compton scattering is one of the most important radiative processes that shapes
the spectra of various sources: black holes and neutron stars in X-ray binaries,
pulsars and pulsar wind nebulae, jets from active galactic nuclei, and the early
universe. Compton scattering kernel takes a simple form if electrons are ultra-
relativistic with the Lorentz factorγ ≫ 1 (Blumenthal & Gould 1970). In a gen-
eral case, when no restrictions are made on the energies of photon and electrons,
Jones (1968) derived the kernel for isotropic electrons andphotons. The formulae
there contain a few misprints, but even by correcting those (see e.g. Pe’er & Wax-
man 2005) they cannot be used for calculations because of a number of numerical
cancellations (see e.g. Belmont 2009). An alternative derivation to that kernel was
given by Brinkmann (1984) and Nagirner & Poutanen (1994), who showed how to
extend the numerical scheme to cover all photon and electronenergies of interest
in astrophysical sources.

In real astrophysical environments, the radiation field does not need to be
isotropic and a more general redistribution function is required to describe angle-
dependent Compton scattering. Nagirner & Poutanen (1994) extended previous
results to the situation when the photon distribution can berepresented as a linear
function of some polar angle cosine (Eddington approximation), deriving an an-
alytical formula for the first moment of the kernel. Aharonian & Atoyan (1981)
were the first to derive a redistribution function for arbitrary photon angular de-
pendence (see also Prasad et al. 1986). Kershaw et al. (1986)and Kershaw (1987)
have developed numerical methods to compute the kernel efficiently and with a
high accuracy. All these works neglect the effect of photon polarization.

Nagirner & Poutanen (1993) have derived a general Compton scattering redis-
tribution matrix for Stokes parameters assuming an isotropic electron distribution.
A general relativistic kinetic equation incorporating theeffects of induced scatter-

7



8 CHAPTER 1. THEORY OF COMPTON SCATTERING

ing and polarization of photons as well as electron polarization and degeneracy
has been derived by Nagirner & Poutanen (2001).

In this chapter we propose a method to extend previous results to the case
where the electron distribution is no longer isotropic, butcan have weak aniso-
tropies which can be represented as a second order polynomial of the cosine of
some polar angle. The proposed formalism can find its application in a number
of astrophysical problems. The distortion of the cosmic microwave background
(CMB) caused by the hot electron gas in clusters of galaxies (i.e. the kinematic
and thermal Sunyaev-Zeldovich effect) is an obvious application. The electron
distribution, isotropic in the cluster frame, can be Lorentz transformed to the CMB
frame, resulting in a dipole term linear in cluster velocityand a small quadrupole
correction. Compton scattering then can be directly computed in the CMB frame.
Another possible application concerns the models of outflowing accretion disk-
coronae or jets (Beloborodov 1999; Malzac et al. 2001). If the outflow velocities
are non-relativistic, the radiation transport can be considered directly in the ac-
cretion disk frame following recipe by Poutanen & Svensson (1996), with the
Lorentz transformed electron distribution.

Weak anisotropies in the electron distribution can arise inhigh-energy sources
with ordered magnetic field, because of the pitch angle-dependence of the syn-
chrotron cooling rate and/or anisotropic injection of high-energy electrons (e.g.
Bjornsson 1985; Roland et al. 1985; Crusius-Waetzel & Lesch1998; Schopper
et al. 1998). An anisotropic electron distribution is also avery natural outcome of
the photon breeding operation in relativistic jets with thetoroidal magnetic field
(Stern & Poutanen 2006, 2008), because the electron-positron pairs born inside
the jet by the external high-energy photons move perpendicularly to the field.

Our method is also extendable to the polarized radiation using the techniques
developed in Nagirner & Poutanen (1993). It is also in principle possible to calcu-
late the scattering redistribution function in the case when the electron distribution
is expressible as an arbitrary order expansion over the polar angle cosine. Unfortu-
nately, in the latter case the analytical expressions become extremely cumbersome
and the advantage over direct numerical integration becomes small.

Although here we consider only photon scattering it is also possible to apply
the same method for electrons interacting with the photons in the case when pho-
ton angular distribution is expressible as an expansion of powers of the polar angle
cosine. This can be of interest only in the deep Klein-Nishina regime where the
electron can lose or gain a large fraction of its initial energy in one scattering and
continuous energy loss approach is not applicable.

This chapter is organized as follows. In Section 1.2 we introduce the rela-
tivistic kinetic equation for Compton scattering and definethe redistribution func-
tion and total cross-section. The expressions for the totalcross-section, the mean
energy and dispersion of scattered photons, and the radiation pressure force are
given in Section 1.3. The exact analytical formulae for the redistribution func-
tion for mono-energetic anisotropic electrons as well as approximate formulae



1.2. RELATIVISTIC KINETIC EQUATION 9

valid in the Thomson regime are derived in Section 1.4. We present the numerical
examples of redistribution functions in Section 1.5, the relativistic theory of the
Sunyaev-Zeldovich effect is developed in Section 1.6. We summarize our findings
in Section 1.7.

1.2 Relativistic kinetic equation

Let us define the dimensionless photon four-momentum asx = {x, x} = x{1,ω},
whereω is the unit vector in the photon propagation direction andx ≡ hν/mec2.
The photon distribution will be described by the occupationnumbern. The di-
mensionless electron four-momentum isp = {γ, p} = {γ, pΩ} = γ{1, βΩ}, where

Ω is the unit vector along the electron momentum,γ and p =
√

γ2 − 1 are the
electron Lorentz factor and its momentum in units ofmec, andβ = p/γ is the
electron velocity in units of speed of light. The momentum distribution of elec-
trons is described by the relativistically invariant distribution function fe(p) (see
Belyaev & Budker 1956; Nagirner & Poutanen 1994).

The interaction between photons and electrons via Compton scattering (in lin-
ear approximation, i.e. ignoring induced scattering and electron degeneracy) can
be described by the explicitly covariant relativistic kinetic equation for photons
(Pomraning 1973; Nagirner & Poutanen 1993; Nagirner & Poutanen 1994):

x · ∇n(x) =
r2

e

2

∫

d3p
γ

d3p1

γ1

d3x1

x1
δ4(p

1
+ x1 − p − x) F

× [

n(x1) fe(p1) − n(x) fe(p)
]

, (1.1)

where∇ = {∂/c∂t,∇} is the four-gradient,re is the classical electron radius,F is
the Klein-Nishina reaction rate (Berestetskii et al. 1982)

F =

(

1
ξ
− 1
ξ1

)2

+ 2

(

1
ξ
− 1
ξ1

)

+
ξ

ξ1
+
ξ1

ξ
, (1.2)

and
ξ = p

1
· x1 = p · x, ξ1 = p

1
· x = p · x1 (1.3)

are the four-products of corresponding momenta. The secondequalities in both
equations (1.3) arise from the four-momentum conservationlaw. The invariant
scalar product of the photon four-momenta can be written in the laboratory frame
as well as in the frame related to a specific electron

q ≡ x · x1 = xx1(1− µ) = ξξ1(1− µ0) = ξ − ξ1, (1.4)

whereµ = ω · ω1 is the cosine of the photon scattering angle in some frame and
µ0 is the corresponding cosine in the electron rest frame.
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In any frame, the kinetic equation can be also put in the usualform of the
radiative transfer equation (Nagirner & Poutanen 1993):

(

1
c
∂

∂t
+ ω · ∇

)

n(x) = −σT Ne s0(x) n(x)

+ σTNe
1
x

∫ ∞

0
x1dx1

∫

d2
ω1 R(x1→ x)n(x1), (1.5)

whereNe is the electron density in that frame. Here we have defined thephoton
redistribution function

R(x1→ x) =
3

16π
1

Ne

∫

d3p
γ

d3p1

γ1
fe(p1)Fδ

4(p
1
+ x1 − p − x) (1.6)

and the total scattering cross-section (in units of Thomsoncross-sectionσT)

s0(x) =
3

16π
1

Ne

1
x

∫

d3p
γ

d3p1

γ1

d3x1

x1
fe(p) F δ4(p

1
+ x1 − p − x). (1.7)

1.2.1 Electron distribution and scattering geometry

Let us now consider a specific frameE. Our basic assumption is that the anisotropy
of the electron distribution in this frame can be expressed as a second order poly-
nomial expansion in the cosine of the polar angle in some coordinate system
(l1, l2, l3):

1
Ne

fe(p) = fe(γ, ηe) =
2

∑

k=0

fk(γ)Pk(ηe), (1.8)

whereNe is the electron density in frameE, ηe = Ω · l3 is the cosine of the polar
angle of the electron momentum,Pk(ηe) are the Legendre polynomials, and we
now switched to the dimensionless distribution functionfe(γ, ηe) normalized to
unity:

∫

d2Ω

∫

fe(γ, ηe) p2dp = 1. (1.9)

The momentsf0, f1 and f2 determine the energy spectrum of electrons and the
relative magnitudes of the isotropic and anisotropic components. The distribution
function for mono-energetic electrons of energyγ0 can be described by

fe(γ, ηe) =
1

4π pγ
δ(γ − γ0)

[

1+
f1
f0
ηe +

f2
f0

P2(ηe)

]

, (1.10)

where the ratiosf1/ f0 and f2/ f0 are constants.
The directions of photons in this coordinate system (see Figure 1.1) are given

by

ω =
√

1− η2 cosφ l1 +
√

1− η2 sinφ l2 + η l3, (1.11)

ω1 =

√

1− η2
1 cosφ1 l1 +

√

1− η2
1 sinφ1 l2 + η1 l3, (1.12)
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Figure 1.1: The scattering particles’ momentum vectors andthe vectorl3. Note
that the shown angular variables are the cosines of the respective angles.

so that the cosine of the scattering angle is

µ = ω · ω1 = ηη1 +
√

1− η2
√

1− η2
1 cos(φ − φ1). (1.13)

1.3 Total cross section and mean powers of energies

1.3.1 Total cross-section

Let us simplify the expression for the total cross-section.We follow here the
approach described in Nagirner & Poutanen (1994). We rewrite the cross-section
as

s0(x) =
1
x

∫

s0(ξ) ξ fe(γ, ηe)
d3p
γ
, (1.14)

where

s0(ξ) =
3

16π
1
ξ

∫

d3p1

γ1

d3x1

x1
F δ4(p

1
+ x1 − p − x). (1.15)

Using the identity

δ(γ1 + x1 − γ − x) = γ1 δ
(

x1 · (p + x) − x · p
)

(1.16)

and taking the integral overp1 in equation (1.15), we get

s0(ξ) =
3

16π
1
ξ

∫

d3x1

x1
F δ

(

x1 · (p + x) − x · p
)

=
3

16π
1
ξ

∫

ξ1dξ1 dµ0 dφ0 F δ
[

ξ1 + ξξ1(1− µ0) − ξ
]

=
3

8ξ2

∫ ξ

ξ/(1+2ξ)
F dξ1, (1.17)
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where we used invariantx1dx1d2ω1 = ξ1dξ1 dµ0 dφ0 and the fact thatF does
not depend on azimuthal angleφ0. SubstitutingF from equation (1.2) we get
(Berestetskii, Lifshitz, & Pitaevskii 1982; Nagirner & Poutanen 1994)

s0(ξ) =
3

8ξ2

[

4+

(

ξ − 2− 2
ξ

)

ln(1+ 2ξ) + 2ξ2 1+ ξ
(1+ 2ξ)2

]

. (1.18)

Putting ξ → x, we, of course, get the total Klein-Nishina cross-section for a
photon of energyx on electrons at rest.

To obtain the total scattering cross-section on an anisotropic electron distribu-
tion, we have to calculate the angular integrals over incoming electron directions
in equation (1.14). We introduce the cosines between electron momentum and
photons:

ζ = Ω · ω, ζ1 = Ω · ω1 (1.19)

so that
ξ = x(γ − pζ), ξ1 = x1(γ − pζ1). (1.20)

We choose the spherical coordinate system and measure the polar angle from the
direction of theinitial photonω, we get

s0(x)= s0(x, η)=
1
x

∞
∫

0

p2dp
γ

1
∫

−1

dζ s0(ξ) ξ

2π
∫

0

dΦ fe(γ, ηe). (1.21)

AzimuthΦ is now defined as the difference between the azimuths of the electron
momentum direction and the vectorl3 in a frame withz-axis alongω. The angular
variableηe in the expansion (1.8) is expressed in this frame as

ηe = ηζ +
√

1− η2
√

1− ζ2 cosΦ. (1.22)

The physical meaning of equation (1.21) can also be understood if we consider
a monoenergetic beam of electrons alongl3 axis: fe(γ, ηe) = δ(ηe − 1)δ(γ −
γ0)/(2πpγ). Then

s0(x, η) = (1− βη) s0(x
′), (1.23)

wherex′ = xγ(1− βη) is the photon energy in the electron rest frame (we omitted
subscript 0 inγ andβ). The factor 1− βη in equation (1.23) accounts for the
reduced number of collision per unit length.

When calculating the azimuthal integral in equation (1.21)we just have to
integratePk(ηe) with ηe given by equation (1.22). The properties of the Legendre
polynomials give us the average

Pk(ηe) = Pk(η) Pk(ζ), (1.24)

so that the averaged distribution function becomes

fe(γ, η, ζ) =
1
2π

∫ 2π

0
dΦ fe(γ, ηe) =

2
∑

k=0

fk(γ)Pk(η) Pk(ζ). (1.25)
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Figure 1.2: (a) Total cross-sectionχ00 = ∆00 for isotropic mono-energetic elec-
trons of various momentap = 0.1, 1, 10, 102, 103 (from top to bottom, dot-dashed,
solid, dotted, dashed, and triple-dot-dashed curves) as a function of photon energy
x. (b) Relative correction to the cross-section arising fromthe dipole term in the
electron distribution (1.8) for the samep as in panel (a). At smallx the curves
approach the asymptotic value in the Thomson limit−β/3. (c) Relative correction
to the cross-section arising from the quadrupole term∆02/∆00.
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The cross-section now can be written as

s0(x, η) = 4π
2

∑

k=0

Pk(η)
∫ ∞

1
pγ dγ fk ∆0k(x, γ), (1.26)

where

∆0k(x, γ) =
1

2γx

∫ 1

−1
Pk(ζ) ξ s0(ξ) dζ. (1.27)

Changing the integration variable and expressingPk throughξ using equation (1.20),
we get

∆0k(x, γ) =
k

∑

n=0

bnk χ0n, (1.28)

where

χ0n(x, γ) =
1

2γp x2+n

∫ x(γ+p)

x(γ−p)
ξn+1 s0(ξ) dξ. (1.29)

and

b00 = 1, b01 =
γ

p
, b11 = −

1
p
, (1.30)

b02 =
1

2p2
(2γ2 + 1), b12 = −

3γ
p2
, b22 =

3
2p2

.

The zeroth function∆00 = χ00 coincides with the functionΨ0(x, γ) from Nagirner
& Poutanen (1994). When electron distribution is isotropic(i.e. f1 = f2 = 0), ex-
pression (1.26) for the total cross-section is reduced to equation (3.4.1) from Na-
girner & Poutanen (1994) and the dependence onη obviously disappears. Func-
tionsχ0n of two arguments can be presented through the functions of one argu-
ment:

χ0n(x, γ) =
1

2γp
u2+n

2+ n
ψn+1,0(xu)

∣

∣

∣

∣

∣

∣

u=γ+p

u=γ−p

, (1.31)

where

ψi0(ξ) =
i + 1
ξi+1

∫ ξ

0
tis0(t)dt. (1.32)

The explicit expressions for the functionsψi0(ξ) (i = 1, 2, 3) can be found in Ap-
pendix A.2 (see also Nagirner & Poutanen (1994)). Thus the total cross-section is
given by a single integral over the electron energy (1.26) with all functions under
the integral given by analytical expressions. Numerical calculations of functions
∆0k can be separated into three regimes: (1) in the Thomson regime, xγ ≪ 1, the
series expansion (see Appendix A.4) can be used; (2) forp ≪ 1, but x not suf-
ficiently small for regime (1), we numerically take the integral in equation (1.27)
using 5-point Gaussian quadrature to reach accuracy betterthan 1%; (3) in other
cases, we use the sum in equation (1.28) and analytical expressions (1.31) forχ0n.
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For mono-energetic electron distribution of Lorentz factor γ given by equation
(1.10), we can introduce the cross-section analogously to equation (1.26):

s0(x, γ, η) =
2

∑

k=0

fk

f0
Pk(η)∆0k(x, γ). (1.33)

For isotropic mono-energetic electrons, the total cross-section is shown in Fig-
ure 1.2(a). The relative corrections arising due to the dipole and quadrupole term
in the electron distribution are shown in Figures 1.2(b) and1.2(c), respectively.
These have to be multiplied by the angle- and, possibly, the energy-dependent
factor Pk(η) fk/ f0 to obtain the final correction. In the Thomson limit, at small
xγ ≪ 1, the cross-section takes the form (see Appendix A.4)

s0(x, γ, η) ≈ 1− 1
3

f1
f0
η β, (1.34)

where the correction to unity term can be easily obtained by averaging the trans-
port cross-section over electron directions (i.e. integrating (1− βζ)ηe over the an-
gles). This corresponds to the flattening in Figure 1.2(b) at∆01/∆00 = −β/3. The
correction from the quadrupole term in this regime as well asfor non-relativistic
electrons becomes negligible:

∆02/∆00 ≈ −
4
15

β2 (xγ). (1.35)

1.3.2 Mean powers of scattered photon energy

In some situations, the full relativistic kinetic equations can be substituted by
the approximate one obtained in the Fokker-Planck approximation. This requires
knowledge of various moments of the redistribution function, such as total cross-
section, the mean energy and dispersion of the scattered photons (see Nagirner &
Poutanen 1994, Vurm & Poutanen 2009). It is often time-consuming to compute
numerically the integrals of the redistribution function and instead direct calcula-
tions of the moments are preferable. Below we obtain analytical expressions for
the mean energy and dispersion of the energy of scattered photons in frameE as a
function of the initial photon energyx and the direction of its propagation relative
to a symmetry axis of the electron distributionl3.

Following Nagirner & Poutanen (1994), we define the mean of powers of en-
ergy of scattered photons:

x j
1s0(x) =

1
x

∫

〈x j
1〉s0(ξ) ξ fe(γ, ηe)

d3p
γ
, (1.36)

where now

〈x j
1〉s0(ξ) =

3
16π

1
ξ

∫

d3p1

γ1

d3x1

x1
F x j

1 δ
4(p

1
+ x1 − p − x) (1.37)

=
3

16π
1
ξ

∫

x j+1
1 dx1d2ω1 F δ{x1[γ + x − ω1·(pΩ+xω)] − ξ} .
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Averaging over photon directions

Quantities (1.37) are not invariants (except forj = 0), and we have to compute
the scattered photon energy in a certain frame, which we choose to be frameE.
Because of the additional termx j

1 under the integral, a simple change of variables
to the electron rest frame as in equation (1.17) is not possible. Instead, we use the
δ-function to take the integral overx1:

〈x j
1〉s0(ξ) =

3
16π

1
ξ2

∫

x j+2
1 d2ω1 F . (1.38)

Now we change the variables to those in the electron rest frame (with subscript
0). We choose the coordinate system with the polar axis alongthe direction of
the incoming photonω0. In this frame, the cosine of the angle between the
electron momentum and the incoming photon isζ0. The cosine of the angle
between the outgoing photon momentum and the electron is then ζ10 = ζ0µ0 +
√

1− ζ2
0

√

1− µ2
0 cosφ0.

We use invariantsx2
1d2ω1 = ξ

2
1dµ0dφ0 and the energy conservation law in the

electron rest frameξ1 = ξ/(1+ξ[1−µ0]), to get (see Nagirner & Poutanen (1994))

x2
1d2ω1 = dξ1dφ0. (1.39)

Finally, we have

〈x j
1〉s0(ξ) =

3
16π

1
ξ2

∫ ξ

ξ/(1+2ξ)
F dξ1

∫ 2π

0
x j

1dφ0. (1.40)

Becauseξ1 is the energy of scattered photon in the electron rest frame,the Doppler
effect gives us

x1=ξ1(γ + pζ10)=ξ1

(

γ+pζ0 µ0+p
√

1− ζ2
0

√

1− µ2
0 cosφ0

)

, (1.41)

where we now can substitute

µ0 = 1+
1
ξ
− 1
ξ1
, pζ0 =

x
ξ
− γ, (1.42)

which are consequences of the conservation law and of the Lorentz transformation
x = ξ(γ + pζ0), respectively. The terms containing a linear combinationof square
roots and cosφ0 will disappear after averaging overφ0.

We now introduce moments of the invariant cross-section

s j(ξ) =
3

8ξ j+2

∫ ξ

ξ/(1+2ξ)
ξ

j
1F dξ1. (1.43)
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For j = 0, we get of course the total cross-sections0 given by equation (1.18).
Nagirner & Poutanen (1994) derived the corresponding expressions forj = 1, 2:

s1(ξ) =
3

8ξ3

(

lξ +
4
3
ξ2 − 3

2
ξ − ξ

2
Rξ −

ξ2

3
R3
ξ

)

, (1.44)

s2(ξ) =
Rξ

16

(

9+ Rξ + 3R2
ξ + 3R3

ξ

)

, (1.45)

wherelξ = ln (1+ 2ξ), andRξ = 1/(1+ 2ξ).
For the mean energy of the scattered photon we have then

〈x1〉 s0(ξ) = ξ
[

γ S1(ξ) + x S2(ξ)
]

, (1.46)

and for the mean square of energy

〈x2
1〉 s0(ξ) = γ

2 ξ2 S4(ξ) − γ x ξ S5(ξ) + x2 S6(ξ) − ξ2 S7(ξ), (1.47)

where

S1(ξ) =
[

s0(ξ) − s1(ξ)
]

/ξ, S2(ξ) =
[

s1(ξ) − S1(ξ)
]

/ξ,

S3(ξ) =
[

s1(ξ) − s2(ξ)
]

/ξ, S4(ξ) =
[

S1(ξ) − S3(ξ)
]

/ξ,

S5(ξ) = 3S4(ξ) − 4S3(ξ), S7(ξ) = S3(ξ) − S4(ξ)/2,

S6(ξ) = s2(ξ) − 3S7(ξ). (1.48)

All functions S j(ξ) are elementary. In addition, they are defined in such a way so
that not to become zero atξ = 0. The series expansion of functionss andS for
small arguments are presented in Appendix A.1.

Averaging over electron directions

We need to integrate in equation (1.36) over anisotropic electron distribution. We
follow the derivation of the total cross-section that lead from equation (1.21) to
equation (1.26). Representing integral over electron momentumd3p = p2dp dζ dΦ
we get:

x j
1s0(x, η) = 4π x j

2
∑

k=0

Pk(η)
∫ ∞

1
pγ dγ fk ∆ jk(x, γ), (1.49)

where

∆ jk(x, γ) =
1

2γx1+ j

∫ 1

−1
Pk(ζ) ξ 〈x j

1〉 s0(ξ) dζ =
k

∑

n=0

bnk χj n (1.50)

and

χj n(x, γ) =
1

2γpx2+ j+n

∫ x(γ+p)

x(γ−p)
〈x j

1〉s0(ξ) ξ
n+1 dξ. (1.51)

Functionsχj 0 = ∆ j0 coincide with functionsΨ j(x, γ) introduced by Nagirner
& Poutanen (1994), while functionsχ0n are given by equation (1.31). The explicit
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Figure 1.3: (a) Mean energy of scattered photons in units of the incident photon
energyx1

iso(x, γ)/x = ∆10/∆00 as a function ofx for isotropic mono-energetic
electrons of various momentap = 0.1, 1, 10, 102, 103 (from bottom to top, dot-
dashed, solid, dotted, dashed, and triple-dot-dashed curves). The asymptotic value
at smallx in Thomson approximation is 1+ 4

3 p2. (b) A correction to the mean en-
ergy (in units ofx1

iso) arising from the linear term in the electron distribution (1.8)
with f1/ f0 = 1. Solid, dotted and dashed curves correspond forp = 1, 10, 100,
respectively. The curves from top to bottom correspond toη = −1,−0.5, 0, 0.5, 1.
At small x, the curves approach the limiting value given by equation (1.58). (c)
Same as (b), but for the quadrupole term in the electron distribution (1.8) with
f2/ f0 = 1. These are even functions ofη, the curves from the bottom to the top
correspond toη = 0, 0.5, 1. At small x, the curves approach the limiting value
given by equation (1.59).
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expressions for the functionχj n for j = 1, 2 (which are analogous to functionsΨ1

andΨ2 from Nagirner & Poutanen (1994)) can be obtained using expression for
mean powers of energies (1.46) or (1.47):

χ1n(x, γ) =
1

2γp
u3+n

3+ n

[

γΨ2+n,1(xu) + xΨ2+n,2(xu)
]

∣

∣

∣

∣

∣

∣

u=γ+p

u=γ−p

, (1.52)

χ2n(x, γ) =
1

2γp

[

γ2 u4+n

4+ n
Ψ3+n,4(xu) − γ u3+n

3+ n
Ψ2+n,5(xu)

+
u2+n

2+ n
Ψ1+n,6(xu) − u4+n

4+ n
Ψ3+n,7(xu)

]
∣

∣

∣

∣

∣

∣

u=γ+p

u=γ−p

, (1.53)

where

Ψi j(ξ) =
i + 1
ξi+1

∫ ξ

0
tiS j(t)dt. (1.54)

These are related to functions

ψi j(ξ) =
i + 1
ξi+1

∫ ξ

0
tis j(t)dt, (1.55)

because functionsS j are expressed throughs j. The explicit expressions for both
type of these functions as well as their series expansions for small arguments are
given in Appendix A.2.

As in the case of functions∆0k, for calculating∆ jk, we consider three regimes:
(1) xγ ≪ 1, when we use the series expansion (see Appendix A.4); (2) for p ≪ 1
we numerically take the integral in equation (1.50) using Gaussian quadrature; (3)
in other cases, we use the sum in equation (1.50) and analytical expressions for
χj n.

For mono-energetic electron distribution (1.10) of Lorentz factorγ, we can
introduce the mean powers of photon energy analogously to equation (1.49):

x j
1 s0(x, γ, η) = x j

2
∑

k=0

fk

f0
Pk(η)∆ jk. (1.56)

The mean energy of scattered photons for such electrons for ascattering act is
given by the ratio of equations (1.56) and (1.33). It is shownin Figure 1.3(a). In
the low-energy (Thomson) limit the energy gain factor is given by a well known
expressionx1

iso
/x = 1+4p2/3, which translated to43γ

2 at largeγ. The relative cor-
rections arising due to the dipole and quadrupole terms in the electron distribution
are shown in Figures 1.3(b) and 1.3(c), respectively. Usingasymptotic expansions
of ∆ jk in the Thomson limit (see Appendix A.4), we get the asymptotic value

x1(x, γ, η)

x1
iso(x, γ)

=
γ2

(

1+ 1
3β

2
)

− 2
3βγ

2 f1
f0
η + 2

15β
2γ2 f2

f0
P2(η)

γ2
(

1+ 1
3β

2
) (

1− 1
3β

f1
f0
η
) . (1.57)



20 CHAPTER 1. THEORY OF COMPTON SCATTERING

Thus in non-relativistic limitβ ≪ 1, the correction is negligible. In the relativistic
limit γ ≫ 1, the relative corrections arising from the two terms are

x1(x, γ, η)

x1
iso(x, γ)

=
1− 1

2
f1
f0
η

1− 1
3

f1
f0
η
, (1.58)

x1(x, γ, η)

x1
iso(x, γ)

= 1+
1
10

f2
f0

P2(η). (1.59)

1.3.3 Energy exchange and dispersion

The difference of the photon energies before and after scatteringx− x1 is of course
just the energy transfer to the electron gas. For the fixed angle between electrons
and incident photonsζ (and fixed electron energyγ), the energy loss averaged over
the directions of scattered photons isx− 〈x1〉. The product (x− 〈x1〉)NeσT s0(ξ) is
then the energy loss on a unit length. From equation (1.46) wecan easily get (see
also Nagirner & Poutanen (1994)):

(x−〈x1〉) s0(ξ)= xs0(ξ) − γξS1(ξ) − xξS2(ξ) = (x + xξ − γξ)S1(ξ). (1.60)

The corresponding energy loss (per unit length and in unitsNeσT) averaged over
the electron directions (and integrated over electron energies) becomes [see equa-
tions (1.26) and (1.49)]:

(x − x1) s0(x, η) = 4πx
2

∑

k=0

Pk(η)
∫ ∞

1
pγ dγ fk (∆0k − ∆1k) . (1.61)

The heating rate per unit volume is then

Ė = NeσT

∫

dx
∫

d2ω I(x,ω)

(

1− x1

x

)

s0(x, η), (1.62)

whereI(x,ω) is the specific intensity of radiation in a given direction.This ex-
pression can be positive (so called Compton heating) when the photons typically
have larger energies than the electron gas, or negative (Compton cooling) when
one considers cooling of the relativistic electron gas by soft radiation.

The dispersion of the scattered photon energy is given by theusual expression
D(x) = x2

1− x1
2, which of course depends on the electron momentum distribution.

For mono-energetic electrons we can define the dispersion as

D(x, γ, η) = x2
1(x, γ, η) − x1

2(x, γ, η), (1.63)

wherex j
1(x, γ, η) are given by equation (1.56). The dispersion for isotropicelec-

trons is shown in Figure 1.3(a). The low-energy (Thomson) limit for x ≪ 1/γ is
(see Nagirner & Poutanen (1994))

D(x, γ) = x2 2
45

(

23γ2 − 8
)

p2. (1.64)
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Figure 1.4: (a) Dispersion of the energy of scattered photons (in units of x2)
for isotropic mono-energetic electrons ofp = 0.1, 1, 10, 102, 103 (from bottom
to top). The asymptotic value ofD/x2 at smallx in the Thomson approximation is
2
45(23γ2 − 8)p2. (b) A correction to the dispersion (in terms of the isotropic quan-
tity) arising from the linear term in the electron distribution (1.8) with f1/ f0 = 1.
Solid, dotted and dashed curves correspond top = 1, 10, 100, respectively. The
curves from top to bottom correspond toη = −1,−0.5, 0, 0.5, 1. (c) A correction
to the dispersion arising from the quadrupole term in the electron distribution (1.8)
with f2/ f0 = 1 for the samep andη as in panel (b). These are even functions ofη,
the curves from bottom to top correspond toη = 0, 0.5, 1.
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The relative corrections arising due to the dipole and quadrupole term in the elec-
tron distribution reach about 50 % and are shown in Figures 1.4(b) and 1.4(c),
respectively.

1.3.4 Radiation force

Now we would like to derive analytic expression for the radiation force acting on
the electron gas. Nagirner & Poutanen (1994) have developeda formalism appro-
priate for isotropic electron distribution, when the averaged transferred momen-
tum is along the momentum of the incoming photons, because ofthe symmetry.
For the electron distribution described by equation (1.8),the momentum is trans-
ferred in the plane containing the initial photon momentum and the symmetry axis
l3. If the incident photons are axially symmetric aroundl3, then obviously, the to-
tal momentum transferred to the electrons has to be parallelto l3 by symmetry.
We derive here more general formulae for the total momentum transferred by a
beam of photons propagating along directionω (such asω · l3 = η), as well as its
projections tol3 and perpendicular direction.

Let us introduce the vector basis:

e1(ω, l3) =
l3 − ηω
√

1− η2
, e2(ω, l3) =

ω × l3
√

1− η2
, e3 = ω. (1.65)

In a single scattering act the momentum transferred is

Q = xω − x1ω1. (1.66)

The components of the momentum transferred to the electron gas along and per-
pendicular toω are:

Q3 = x − x1ω1 · e3 = x − x1µ, (1.67)

Q1 = −x1ω1 · e1 = −x1
η1 − ηµ
√

1− η2
. (1.68)

Analogously to equation (1.36), we define the mean transferred momentum as

Q s0(x) =
1
x

∫

〈Q〉s0(ξ) ξ fe(γ, ηe)
d3p
γ
, (1.69)

where

〈Q〉s0(ξ) =
3

16π
1
ξ

∫

d3p1

γ1

d3x1

x1
F Q δ4(p

1
+ x1 − p − x) (1.70)

=
3

16π
1
ξ

∫

x1dx1d2ω1 F Q δ{x1[γ + x −ω1·(pΩ+xω)] − ξ} .
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Averaging over photon directions

Let us introduce a vector basis defined by the photon and electron momenta:

e1(ω,Ω) =
Ω − ζ ω
√

1− ζ2
, e2(ω,Ω) =

ω ×Ω
√

1− ζ2
, e3 = ω, (1.71)

whereζ = ω ·Ω, thereforeΩ =
√

1− ζ2 e1(ω,Ω)+ ζ e3. Fixing the angle arccosζ
between the electrons of momentumpΩ and the incident photon momentum and
averaging over directions of scattered photons, we can get the mean momentum
transmitted in the directionω:

〈Q3〉 s0(ξ) = 〈x − x1〉 s0(ξ) + 〈x1 (1− µ)〉 s0(ξ). (1.72)

The first term is given by equation (1.60), the second term is

〈x1(1− µ)〉 s0(ξ) =
3

16πξ2

∫

x3
1(1− µ)Fd2ω1

=
3

16π x ξ

∫

ξ1 (1− µ0) F dξ1 dφ0 (1.73)

=
3

8 x ξ2

∫ ξ

ξ/(1+2ξ)
(ξ − ξ1) F dξ1 =

ξ

x
[s0(ξ) − s1(ξ)] =

ξ2

x
S 1(ξ),

where we have used the invariant given by equation (1.4) and changed the vari-
ables according to equation (1.39). Thus, for the fixed electron and photon ener-
gies and the angle between their momenta, the mean momentum transmitted to
the electron gas in the direction of the initial photon propagationω, in accordance
with equations (1.48), (1.46) and (1.73), is (Nagirner & Poutanen 1994)

〈Q3〉s0(ξ)=〈x − x1 µ〉s0(ξ)=

(

x + x ξ − γ ξ + ξ
2

x

)

S1(ξ). (1.74)

In contrast to Nagirner & Poutanen (1994), we are now interested to know the
total momentum transfer. Obviously, by symmetry, it has to lie in the (Ω,ω) plane.
Averaging expression (1.68) forQ1 over angles is not easy, but we can compute
the momentum transferred along the electron momentum:QΩ ≡ xζ − x1ζ1. Using
identity x1ζ1 = (γx1 − ξ1)/p and substituting equation (1.41) and (1.42), similarly
to equation (1.40), we get

〈x1ζ1〉s0(ξ) =
3

16π
1
ξ2

∫ ξ

ξ/(1+2ξ)
F dξ1

∫ 2π

0
x1ζ1dφ0

=
3

8ξ2

∫ ξ

ξ/(1+2ξ)
F dξ1

1
p

[(

γx
ξ
+
γx
ξ2
− γ

2

ξ
− 1

)

ξ1 + γ

(

γ − x
ξ

)]

=
1
p

(

γx +
γx
ξ
− γ2 − ξ

)

s1(ξ) +
γ

p

(

γ − x
ξ

)

s0(ξ)

=
1
p

[

γ2ξ S1(ξ) + γx ξ S2(ξ) − ξ s1(ξ)
]

, (1.75)
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and using identityxζ = (γx − ξ)/p, we finally obtain

〈QΩ〉s0(ξ) = 〈xζ − x1ζ1〉s0(ξ) =
1
p

(

γx + γx ξ − γ2ξ − ξ2
)

S1(ξ). (1.76)

The momentum alonge1(ω,Ω) is then simply

〈Q1〉s0(ξ) =
〈QΩ〉 − ζ 〈Q3〉

√

1− ζ2
s0(ξ)

=
S1(ξ)

p
√

1− ζ2

(

ξ−2γ
ξ2

x
+
ξ3

x2

)

= −p
√

1− ζ2 ξ S1(ξ). (1.77)

Thus the total transferred momentumQ averaged over directions of scattered pho-
tons can be decomposed into two components along basis vectors:

〈Q〉 = 〈Q1〉 e1(ω,Ω) + 〈Q3〉 e3. (1.78)

Averaging over electron directions

As in previous sections, we choose to measure the azimuth of the electron mo-
mentumΦ in the frame defined by equations (1.65) from the projection of vector
l3 onto the plane perpendicular toω. Therefore,

〈Q〉 = 〈Q1〉 [cosΦ e1(ω, l3) + sinΦ e2(ω, l3)] + 〈Q3〉 e3. (1.79)

The total momentum transfer averaged over the electron distribution is obtained
from equation (1.69):

Q s0(x, η) =
1
x

∫ ∞

1
p dγ

∫ 1

−1
dζ ξ

∫ 2π

0
dΦ 〈Q〉s0(ξ) fe(γ, ηe). (1.80)

Obviously, the component alonge2(ω, l3) becomes zero, asfe is an even function
of Φ. The term alonge1(ω, l3) involves integration offe over azimuth with the
weight cosΦ, and its averaged value is

fe cosΦ =
2

∑

k=1

fk

k(k + 1)
P1

k(η)P
1
k(ζ), (1.81)

whereP1
k are the associated Legendre functions:

P1
1(u) =

√
1− u2, P1

2(u) = 3u
√

1− u2. (1.82)

It is worth mentioning that the isotropic component of the electron distribu-
tion f0 does not contribute to the momentum transferred perpendicular to ω by
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symmetry. Substituting expression (1.77) into equation (1.80), we get the first
component of the vector

Q1s0(x, η) = 4πx
2

∑

k=1

P1
k(η)

∫ ∞

1
pγ dγ fk ∆

⊥
1k(x, γ), (1.83)

where

∆⊥1k(x, γ) =
1

k(k + 1)
1

2γx2

∫ 1

−1
P1

k(ζ) ξ 〈Q1〉 s0(ξ) dζ. (1.84)

Changing the integration variable toξ, and introducing a set of functions

χ⊥1n(x, γ) =
1

2γp x3+n

∫ x(γ+p)

x(γ−p)

√

1− ζ2 〈Q1〉s0(ξ) ξ
n+1 dξ

=
1

2γp
1
p

[

u3+n

3+ n
Ψ2+n,1(xu) − 2γ

u4+n

4+ n
Ψ3+n,1(xu)

+
u5+n

5+ n
Ψ4+n,1(xu)

]
∣

∣

∣

∣

∣

∣

u=γ+p

u=γ−p

, n = 0, 1, (1.85)

we get

∆⊥11 =
1
2
χ⊥10, ∆⊥12 =

1
2p

(

γχ⊥10 − χ⊥11

)

. (1.86)

Now let us evaluate the component of vector (1.80) alonge3. Because〈Q3〉
does not depend on azimuthΦ, the azimuthal integration just gives the averaged
electron distribution given by equation (1.25). Thus we get

Q3 s0(x, η)=4πx
2

∑

k=0

Pk(η)

∞
∫

1

pγ dγ fk
(

∆0k − ∆1k + ∆
∗
1k

)

, (1.87)

where

∆∗1k(x, γ)=
1

2γx2

1
∫

−1

Pk(ζ) ξ 〈x1(1− µ)〉s0(ξ) dζ=
k

∑

n=0

bnk χ
∗
1n, (1.88)

and

χ∗1n(x, γ) =
1

2γp x3+n

∫ x(γ+p)

x(γ−p)
〈x1(1− µ)〉 s0(ξ) ξ

n+1 dξ

=
1

2γp
u4+n

4+ n
Ψ3+n,1(xu)

∣

∣

∣

∣

∣

∣

u=γ+p

u=γ−p

, n = 0, 1, 2. (1.89)

For isotropic electron distribution, the only function of interest is∆∗10 which
coincides with functionΨ∗1(x, γ) introduced by Nagirner & Poutanen (1994). Now
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Figure 1.5: (a) Average momentum transferred to the electron gas per scat-

tering Q
iso

(in units of x) for isotropic mono-energetic electrons (withf1 =
f2 = 0). Curves from bottom to top correspond to the electron momenta
p = 0.1, 1, 10, 102, 103. The asymptotic value at smallx in the Thomson ap-
proximation is 1+ 2p2/3 [Nagirner & Poutanen (1994); see equation (1.95)]. (b)
The momentum transferred alongω for anisotropic electrons withf1/ f0 = 1 in

units of the isotropic quantityQ
iso

. Solid, dotted and dashed curves correspond
to p = 1, 10, 100, respectively. The curves from top to bottom correspondto
η = −1,−0.5, 0, 0.5, 1 (pink, green, black, red, and blue curves, respectively).(c)
Same as (b), but for the electron distribution (1.8) with thequadrupole term with
f2/ f0 = 1 for the samep andη as in panel (b). These are even functions ofη, the
curves from the bottom to the top correspond toη = 0, 0.5, 1. The flat parts of the
curves correspond to the Thomson limit given by equation (1.95).
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combining equations (1.83) and (1.87), we get the momentum transfer along the
symmetry axis of the electron distributionl3 and perpendicular to it:

Q‖ =
√

1− η2 Q1 + ηQ3, (1.90)

Q⊥ = −ηQ1 +
√

1− η2 Q3. (1.91)

Expressions (1.87), (1.83) and (1.90) give the momentum transferred to the elec-
tron gas (in terms of one integral over the electron energy) alongω, perpendicular
to that direction as well as along vectorl3 and perpendicular to it.

Similarly to equation (1.62), we can also get the two components of the mo-
mentum transfer rate per unit volume:

Ṗ1, 3 =
NeσT

c

∫

d x
x

∫

d2ω I(x, η) Q1, 3 s0(x, η). (1.92)

For mono-energetic electron distribution of Lorentz factor γ given by equation
(1.10), the momenta transferred alongω and perpendicular to it are

Q3 s0(x, γ, η) = x
2

∑

k=0

fk

f0
Pk(η)

(

∆0k − ∆1k + ∆
∗
1k

)

, (1.93)

Q1 s0(x, γ, η) = x
2

∑

k=1

fk

f0
P1

k(η) ∆
⊥
1k, (1.94)

where we kept the notations for the functionsQ3 andQ1, but added the argument
γ. To get the average momentum transferred in a single scattering act, one needs
to divide these expression by the total cross-sections0(x, γ, η). Theω component
of the transferred momentum for isotropic electrons is shown in Figure 1.5(a). As
shown by Nagirner & Poutanen (1994), the low-energy (Thomson) limit is given
by x (1 + 2p2/3). The angular dependent corrections arising due to the dipole
and quadrupole term in the electron distribution are shown in Figures 1.5(b) and
1.5(c), respectively. While the component perpendicular toω is zero for isotropic
electrons, a substantial momentum component arises in the anisotropic case. For
a large linear term of the electron distribution withf1/ f0 = 1, the momentum
transferred in that direction is shown in Figure 1.6(a). Similar results in the case
of the quadrupole term withf2/ f0 = 1 are shown in Figure 1.6(b). In the Thomson
limit, we get (see Appendix A.4)

Q3 s0(x, γ, η) = x

[

1+
2
3

p2 − f1
f0
η β

2
15

(4γ2 + 1)+
f2
f0

P2(η)
4
15

p2

]

, (1.95)

Q1 s0(x, γ, η) = x γ2β
√

1− η2

[

− f1
f0

1
3

(

1+
β2

5

)

+
2
5

f2
f0
η β

]

. (1.96)
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Figure 1.6: (a) Momentum transferred in the direction perpendicular toω (in units
of the momentum alongω for isotropic distribution) arising from the linear term in
the electron distribution (1.8) withf1/ f0 = 1. Forη = ±1, the momentum is zero
by symmetry. From the top to the bottom curves correspond toη = −0.5 (green),
0.5 (red), 0 (black). Solid, dotted and dashed curves correspond top = 1, 10, 100,
respectively. (b) Momentum transferred in the direction perpendicular toω arising
from the quadrupole term in the electron distribution (1.8)with f2/ f0 = 1 for
the samep as in panel (a). The curves from bottom to top correspond toη =

±0.25, 0.5, 0.75 (black, red, blue curves). The momentum is zero forη = −1, 0, 1
because of the symmetry. The flat parts of the curves correspond to the Thomson
limit given by equation (1.96).
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1.4 Redistribution functions for anisotropic
electrons

We would like to reduce the expression for the redistribution function (1.6) to a
form suitable for calculations. For the electron distribution of the form (1.8), this
function should depend on the energies of incoming and scattered photonsx1 and
x, the corresponding (cosines of) polar anglesη1 andη as well as the difference in
azimuthφ − φ1 (or cosine of the scattering angleµ).

1.4.1 Integration over electron directions

The three-dimensional integral overp in equation (1.6) disappears due to theδ-
function. For further simplifications we can also use the identity

δ(γ1 + x1 − γ − x) = γδ
(

x · (p
1
+ x1) − x1 · p1

)

. (1.97)

At this stage, we drop subscript 1 with the electron quantities and get

R(x1→ x) =
3

16π

∫

d3p
γ

δ(Γ) fe(γ, ηe) F. (1.98)

where
Γ = γ(x1 − x) − p(x1ω1 − xω) ·Ω − q. (1.99)

The angular integrals in equation (1.98) need the introduction of a suitable
coordinate system. Often the polar axis is taken along the direction of the scattered
photonω (see e.g. Nagirner & Poutanen 1993, 1994). However, the easiest and
the most transparent way, is to choose the polar axis along the direction of the
transferred momentum as was proposed by Aharonian & Atoyan (1981) (see also
Prasad et al. 1986)

n ≡ (x1ω1 − xω) /Q, (1.100)

where

Q2 = (x1ω1 − xω)2 = x2 + x2
1 − 2xx1µ = (x − x1)

2 + 2q. (1.101)

With this definition we get:

cosκ ≡ n · ω = (x1µ − x) /Q, sinκ = x1

√

1− µ2/Q (1.102)

and
cosα ≡ n · l3 = (x1η1 − xη) /Q. (1.103)

Thus one of the integration variables becomes cosθ = Ω · n and another is
azimuthΦ. The redistribution function (1.98) then can be written as

R(x1→ x)=
3

16π

∞
∫

1

pdγ

1
∫

−1

d cosθ

2π
∫

0

dΦ fe(γ, ηe) F δ(Γ), (1.104)
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where now
Γ = γ(x1 − x) − q − pQ cosθ. (1.105)

Integrating first over cosθ using theδ-function we get

R(x1→ x) =
3

16π

∫ ∞

γ∗

dγ
1
Q

∫ 2π

0
dΦ fe(γ, ηe) F, (1.106)

where we need to substitute

cosθ =
γ(x1 − x) − q

pQ
(1.107)

to the expressions forηe andF (see below). This yields

sinθ =
b

√
r pQ

, (1.108)

where

b =
√

r
√

p2Q2 − [γ(x1 − x) − q]2, r =
1+ µ
1− µ. (1.109)

The lower limit for the integral overγ comes from the requirement that| cosθ| ≤ 1:

γ ≥ γ∗(x, x1, µ) =
1
2

(

x − x1 + Q
√

1+ 2/q
)

. (1.110)

1.4.2 Integration over the azimuth

In order to calculate the azimuthal integral in equation (1.106) we have to express
ξ andξ1 (that enter the expression forF) andηe in terms of the integration variable
Φ. We measure the azimuthΦ from the projection ofω onto the plane normal to
n, so that in this system

ω = (sinκ, 0, cosκ) (1.111)

and the unit vector along the electron momentum is

Ω = (sinθ cosΦ, sinθ sinΦ, cosθ). (1.112)

Thus we can express the angle between the electron momentum and l3 (see Fig-
ure 1.1) throughΦ:

ηe ≡ Ω · l3 = cosθ cosα + sinθ sinα cos(χ −Φ), (1.113)

whereχ is the azimuth of the vectorl3 in then frame. We can also write

η ≡ ω · l3 = cosκ cosα + sinκ sinα cosχ, (1.114)

and use this expression to obtain cosχ. Substituting it to equation (1.113) we
thus express the electron polar angleηe in equation (1.8) through the integration
variableΦ.
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The kernelF depends on the four-productsξ andξ1, which can be rewritten as

ξ1 = x(γ − pζ), ξ = q + ξ1, (1.115)

where
ζ ≡ Ω · ω = cosθ cosκ + sinθ sinκ cosΦ. (1.116)

Equation (1.115) then can be transformed to

ξ1 =
q

Q2
(d− − b cosΦ), ξ =

q
Q2

(d+ − b cosΦ), (1.117)

where we defined

d− = γ(x + x1) − x(x − x1µ) ,

d+ = γ(x + x1) + x1(x1 − xµ) = d− + Q2, (1.118)

which have the following property:
(

d2
− − b2

)

/Q2 = (γ − x)2 + r ≡ a2
−,

(

d2
+ − b2

)

/Q2 = (γ + x1)
2 + r ≡ a2

+. (1.119)

FunctionF in the azimuthal integral in equation (1.106) is an even function of
Φ. Therefore the terms infe containing sinΦ give zero contribution. Neglecting
these terms we can express the azimuthal integral as

∫ 2π

0
ηeFdΦ =

∫ 2π

0
ηeFdΦ, (1.120)

∫ 2π

0
η2

eFdΦ =

∫ 2π

0
η2

eFdΦ, (1.121)

where

ηe = cosθ cosα + sinθ sinα cosχ cosΦ, (1.122)

η2
e = cos2 θ cos2α + sin2 θ sin2α sin2 χ

+ 2 sinθ sinα cosθ cosα cosχ cosΦ

+ sin2 θ sin2α cos 2χ cos2Φ. (1.123)

Thus the expansion (1.8) (withηe andη2
e substituted byηe andη2

e, respectively) is
a quadratic function of cosΦ. Expressing

cosΦ = −Q2

2b
ξ + ξ1

q
+

d− + d+
2b

, (1.124)

cos2Φ =
Q4

b2

ξξ1

q2
− Q2(d+ + d−)

2b2

ξ + ξ1

q
+

d2
+ + d2

−
2b2
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and using the identityξ = ξ1 + q, we obtain an expansion offe that is symmetric
in ξ andξ1:

fe(γ) = c0 + cΣ
ξ + ξ1

q
+ cΠ

ξξ1

q2
. (1.125)

The coefficientsc0, cΣ andcΠ can be represented in the form:

c0 = f0 + c01 f1 + c02 f2,

cΣ = c11 f1 + c12 f2, (1.126)

cΠ = c22 f2,

where the coefficients in front of f0,1,2 can easily be derived after lengthy but
straightforward calculation:

c01 =
2ρ − ǫ + ǫ1

2p(1+ µ)
,

c11 = −
ǫ + ǫ1

2p(1+ µ)
,

c02 =
3

4p2(1+ µ)2

[

(ǫ − ρ)2 + (ǫ1 + ρ)2 + λ(a2
− + a2

+)
]

− 1
2
,

c12 = −
3

4p2(1+ µ)2

[

(ǫ + ǫ1)(2ρ − ǫ + ǫ1) + λ(d− + d+)
]

,

c22 =
3

2p2(1+ µ)2

[

(ǫ + ǫ1)
2 + λQ2

]

. (1.127)

Here we defined

ǫ ≡ x(η1 − ηµ) , ǫ1 ≡ x1(η − η1µ) , ρ = γ(η + η1) ,

λ = µ2 + η2 + η2
1 − 2µηη1 − 1. (1.128)

The redistribution function (1.106) is then expressed as

R(x1,ω1→ x,ω) =
3
8

∞
∫

γ∗(x, x1, µ)

dγ [c0R0 + cΣRΣ + cΠRΠ] , (1.129)

where we have introduced three functions

R0(x, x1, µ, γ) =
1
πQ

∫ π

0
F dΦ, (1.130)

RΣ(x, x1, µ, γ) =
1

πQ q

∫ π

0
(ξ + ξ1)F dΦ, (1.131)

RΠ(x, x1, µ, γ) =
1

πQ q2

∫ π

0
ξξ1F dΦ. (1.132)
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Alternatively, we can represent the redistribution function as a sum of three terms
arising from the corresponding three terms in the electron distribution:

R(x1,ω1→ x,ω) =
3
8

∞
∫

γ∗(x, x1, µ)

dγ
[

f0R0 + f1R1 + f2R2
]

, (1.133)

where

R1(x, η; x1, η1; µ; γ) = c01R0 + c11RΣ , (1.134)

R2(x, η; x1, η1; µ; γ) = c02R0 + c12RΣ + c22RΠ .

Using the Klein-Nishina cross-section (1.2) in the form

F = 2+
q2 − 2q − 2

q

(

1
ξ1
− 1
ξ

)

+
1
ξ2
+

1

ξ2
1

, (1.135)

(and remembering thatξ = ξ1 + q), we see that the integrals (1.130)–(1.132)
involve integrals of types

∫ π

0
ξs dΦ,

∫ π

0
ξs

1 dΦ, (1.136)

wheres = −2, ..., 2. The integrals over non-negative powers ofξ andξ1 are trivial.
For the negative powers, using equations (1.117) and (1.119) we get (see Nagirner
& Poutanen 1993, for details):

∫ π

0

dΦ
ξ1
=
πQ
q

1
a−
,

∫ π

0

dΦ

ξ2
1

=
πQ
q2

d−
a3
−

(1.137)

and similar equations forξ which we get by substitutingξ, a+ andd+ for ξ1, a−
andd−, respectively.

After some straightforward algebra we get the expressions for R0, RΣ andRΠ:

R0 =
2
Q
+

q2 − 2q − 2
q2

(

1
a−
− 1

a+

)

+
1
q2

(

d−
a3
−
+

d+
a3
+

)

, (1.138)

which was obtained by Aharonian & Atoyan (1981) (see also Nagirner & Pouta-
nen 1993),

RΣ=
2

Q3
(d− + d+)+

(

1− 2
q

) (

1
a−
+

1
a+

)

+
1
q2

(

d−
a3
−
−d+

a3
+

)

(1.139)

and

RΠ =
2

Q5

(

d−d+ +
b2

2

)

+

(

1− 2
q

)

1
Q
+

1
q2

(

1
a−
− 1

a+

)

. (1.140)

Equation (1.129) (or alternatively equations (1.133) and (1.134)) together with our
computed redistribution functions (1.138)–(1.140) and the coefficients (1.126)–
(1.128) give the full analytical solution for the redistribution function describing
scattering of arbitrary photons from the electron gas whichanisotropy can be de-
scribed by equation (1.8).
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1.4.3 Alternative redistribution functions

An alternative expression for the redistribution functionR(x1 → x) can be ob-
tained if we compute the moments

Rφ(x, x1, µ, γ) =
1
πQ

∫ π

0
cosΦ F dΦ

=
q2 − 2q − 2

q2

1
b

(

d−
a−
− d+

a+

)

+
b
q2

(

1

a3
−
+

1

a3
+

)

, (1.141)

Rφφ(x, x1, µ, γ) =
1
πQ

∫ π

0
cos2Φ F dΦ

=
1
Q
+

Q3

b2

(

1− 2
q

)

+
q2 − 2q − 2

q2

1
b2

(

d2
−

a−
− d2

+

a+

)

− Q2

q2b2

(

d−
a−
+

d+
a+

)

+
1
q2

(

d−
a3
−
+

d+
a3
+

)

. (1.142)

The expressions forR1 andR2 then take the form:

R1 = d01R0 + d11Rφ , (1.143)

R2 = d02R0 + d12Rφ + d22Rφφ ,

where

d01 = cosθ cosα,

d11 = sinθ sinα cosχ =
b

p(1+ µ)Q2
(ǫ + ǫ1) ,

d02 =
3
2

(

cos2 θ cos2α + sin2 θ sin2α sin2 χ
)

− 1
2

=
3
2

(

2d2
01− d2

11+ sin2 θ − cos2α
)

− 1
2
, (1.144)

d12 = 3 cosθ cosα sinθ sinα cosχ = 3 d01 d11,

d22 =
3
2

sin2 θ sin2α cos 2χ

=
3
2

(

2d2
11− d2

01− sin2 θ + cos2α
)

.

1.4.4 Approximate redistribution functions

Approximate forms of equations (1.138)–(1.140) can be obtained by making cer-
tain simplifying assumptions about the scattering. For example, in the Thomson
regime in the electron rest frame the Klein-Nishina kernelF is just 1+µ2

0. Assum-
ing further isotropic scattering in that frame and substituting F by 4/3, we now
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get for the integrals (1.130)–(1.132):

R0 ≈
4

3Q
, (1.145)

RΣ ≈
4

3Q3
(d− + d+) , (1.146)

RΠ ≈
4

3Q5

(

d−d+ +
b2

2

)

. (1.147)

The expression forR0 was derived by Arutyunyan & Nikogosyan (1980). For the
alternative functions (1.141), (1.142), we then have

Rφ = 0, Rφφ =
2

3Q
. (1.148)

These then give

R1 ≈ d01R0 = cosθ cosα R0, (1.149)

R2 ≈
(

d02+
1
2

d22

)

R0 = P2(cosθ) P2(cosα) R0, (1.150)

with cosθ and cosα given by equations (1.107) and (1.103), respectively. The
approximate expressions are better than 50 % accurate in theThomson regime for
x1γ < 0.1 at all scattered photon energies.

1.4.5 Relation to the mean powers of photon energies

The relation between the redistribution function averagedover any electron distri-
bution and the mean powers of photon energies follows directly from their defini-
tions (1.6), (1.7) and (1.36):

x j
1 s0(x, η) =

1
x

∫

x j+1
1 dx1

∫

d2ω1 R(x→ x1). (1.151)

This relation is valid for any electron distribution. Comparing equations (1.133)
and (1.49), we get a relation between the functions depending on the electron
energy:

∆ jk(x, γ)Pk(η) =
3

32πγpx j+1

×
∫ xm(x,γ)

x−(x,γ)
x j+1

1 dx1

∫

Rk(x1, η1; x, η; µ; γ) d2ω1, (1.152)

whereη1 = ηµ +
√

1− η2
√

1− µ2 cosΦ andR0 depends only on the scattering
angleµ, but notη, η1. The integrals over the solid angle can be represented as
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the integrals overdµ anddΦ, whereΦ ∈ [0, 2π] and the limits onµ, µm(x1, x, γ)
andµ+(x1, x, γ), are given by equations (A.39)–(A.40) with the argumentsx and
x1 reversed. Using equations (1.87) and (1.84), we also get

∆∗1k(x, γ)Pk(η) =
3

32πγpx2

∫

x2
1dx1

∫

(1− µ) Rk d2ω1, (1.153)

∆⊥1k(x, γ)P1
k(η) =

3
32πγpx2

∫

x2
1dx1

∫

√

1− µ2 cosΦRkd
2ω1. (1.154)

In order to check the accuracy of our derivations we comparedthe left hand sides
of equations (1.152)–(1.154) to the right-hand sides, where the integrals were per-
formed numerically and obtained consistent results.

1.5 Examples of redistribution functions

Now we demonstrate the properties of the derived redistribution functions. We
consider a volume filled by electrons with the angular distribution given by equa-
tion (1.8). The emissivity in a directionω at energyx can be obtained from the
radiative transfer equation (1.5) and is given by the integral over the redistribution
function

ǫ(x) = σTNe x2

∫ ∞

0

dx1

x2
1

∫

d2ω1 I(x1) R(x1,ω1→ x,ω), (1.155)

whereI(x1) = 2me(mec2/h)3x3
1n(x1) is the specific intensity of the incident radia-

tion normalized to the photon density as

Nph =
1

mec3

∫

d2ω

∫

I(x)
dx
x
. (1.156)

Let us consider mono-energetic (with energyγ) electron distribution (1.10).
Consider also a monochromatic source of isotropic seed photons at energyx1 with
total photon number densityNph. According to equation (1.133) we can write the
emissivity at an observer directionη for a given scattering angle as

ǫ(x, η, µ) =
3

32π
mec

3σTNeNph
x2

x1

1
pγ

[

R0 +
f1
f0

R1 +
f2
f0

R2

]

, (1.157)

which is related to the scattering angle-averaged emissivity asǫ(x) = 1
2

∫

ǫ(x, η, µ)dµ,
and where (fork = 1, 2)

Rk(x, η; x1; µ; γ) =
1
2π

∫ 2π

0
dΦ Rk(x, η; x1, η1; µ; γ) (1.158)
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Figure 1.7: Redistribution functions for anisotropic electrons at a given scattering
angle. The incident photon energy isx1 = 10−2 and the electron momentump =
0.1. The upper panel shows the photon (number) emissivity for isotropic electrons.
The solid, dotted, dashed, dot-dashed and dot-dot-dashed curves correspond to the
cosine of scattering angleµ = −2/3,−1/3, 0, 1/3, 2/3, respectively. The lower left
panels show the ratioR1/R0, while the right panels showR2/R0 as a function of
the ratio of the scattered to the incident photon energies. The three row of panels
corresponds to the different observer directionsη = 1, 0.5, 0.
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Figure 1.8: Same as Figure 1.7, but forp = 1. Note, that here the axes are in
logarithmic units.
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Figure 1.9: Same as Figure 1.8, but forp = 10.
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Figure 1.10: Same as Figure 1.8, but forp = 100.
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andη1 = ηµ+
√

1− η2
√

1− µ2 cosΦ. These functions obviously possess symme-
try properties:

R1(x,−η; x1; µ; γ) = −R1(x, η; x1; µ; γ), (1.159)

R2(x,−η; x1; µ; γ) = R2(x, η; x1; µ; γ). (1.160)

We compute separately the emissivities resulting from three terms in the elec-
tron distribution, i.e. functionsR0,R1,R2 (see equation (1.157)), and show in Fig-
ures 1.7–1.10 the functionR0 multiplied by x (i.e. quantity proportional to the
photon number emissivity) for better visibility as well as the ratiosR1/R0 and
R2/R0. The main behavior of the functions can easily be understoodusing formu-
lae (1.149)–(1.150) derived in the Thomson limit and isotropic scattering approxi-
mation. Averaging them over the azimuth and using relationPk(η1) = Pk(η)Pk(µ),
we get

R1

R0
≈ x1µ − x

Q
η cosθ , (1.161)

R2

R0
≈

x2
1P2(µ) − 2xx1µ + x2

Q2
P2(η) P2(cosθ) . (1.162)

These approximate expressions become extremely accurate for high p (i.e. accu-
racy is about 10−3 at p = 100).

For a small electron momentump = 0.1 and low photon energiesx1 = 10−2,
the exact redistribution functions are shown in Figure 1.7.In this regime, scatter-
ing is nearly coherent with the scattered photon energies bounded by (see equa-
tion (A.35)) x±/x1 ≈ 1 ± p

√

2(1− µ). In this regime,|x − x1|2 ≪ q ≪ x, x1 and
cosθ ≈ (x1−x)/pQ is a nearly linear function ofx/x1, becauseQ/x1 ≈

√

2(1− µ).
For µ not too close to 1, the azimuth averaging of cosα gives−η

√

(1− µ)/2 and
thusR1/R0 ≈ (1 − x/x1)η/(2p). For η = 0, the function is always zero, because
of the symmetry. Similarly, the nearly quadratic dependence of R2/R0 on energy
results from the cos2 θ term, while atµ ≈ 1/3 the function becomes more compli-
cated because of the cancellation in theP2(cosα) term.

In the opposite limit of the relativistic electrons (see Figures 1.9 and 1.10),
the approximation (1.145) for the functionR0 works fine up tox1γ . 0.1, while
as said above the ratiosR1/R0 andR2/R0 are very close to those given by equa-
tions (1.161) and (1.162) for any photon and electron energies. At small scattered
photon energiesx ≪ x1, xR0 ∝ x/x1, and

R1/R0 ≈ ηµ cosθ, R2/R0 ≈ P2(η)P2(µ)P2(cosθ), (1.163)

with cosθ ≈ 1− x/x1. At high scattered photon energiesx ≫ x1, the photons are
scattered at large angles in the electron rest frame and therefore they are beamed
in the direction of the incoming electrons. In that case, theangular distribution of
the scattered photons resemble that of the electrons. In this regimexR0 ∝ const,
andR1/R0 ≈ η andR2/R0 ≈ P2(η), which gives the flat dependences clearly seen
in Figures 1.9 and 1.10, andǫ(x) ∝ fe(γ, η) x/x1.
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1.6 Sunyaev–Zeldovich effect

Let consider a cloud of isotropic Maxwellian electrons of temperatureΘ ≡ kTe/mec2,
which moves with velocitycβb (corresponding Lorentz factorΓb) through the
isotropic cosmic microwave background of temperatureΘcmb ≡ kTcmb/mec2. We
compute the thermal and kinematic Sunyaev–Zeldovich effects (Zeldovich & Sun-
yaev 1969; Sunyaev & Zeldovich 1972), i.e. the spectrum of the scattered radi-
ation (and resulting deviations from the black body) as a function ofΘ and the
angle between the line of sight and the direction of motion.

One approach would be to make a Lorentz transformation of theincident ra-
diation to the comoving frame, compute the Compton scattered radiation using
the kernel corresponding to isotropic electron distribution, and then to Lorentz
transform it back to the observer frame. Another way is to compute the electron
distribution in the observer frame, approximate it by expansion (1.8) and compute
directly the Compton scattered radiation in the observer frame. The second ap-
proach might be favorable from numerical point of view if theobject velocity is
variable in space and/or time, as allows to pre-compute redistribution functionsat
a fixed grid of angles and photon energies.

1.6.1 Scattering in the comoving frame

Let us first compute the scattered radiation by a standard method considering scat-
tering in the comoving frame. The relativistic Maxwellian distribution of electrons
in the comoving frame (quantities with primes) is given by

f ′e(p′) = N′e
exp(−γ′/Θ)

4πΘK2(1/Θ)
, (1.164)

whereK2 is the modified Bessel function andN′e is the electron density in that
frame. The incident black body radiation occupation numberis

nbb(x) =
1

exp(xt) − 1
, (1.165)

wherext = x/Θcmb = hν/kTcmb. From the radiative transfer equation (1.5), in the
limit of small optical depth, we get the correction to the black body spectrum:

∆n(x, η) = n(x, η) − nbb(x) = −τTs0(x
′)nbb(x) + S (x, η), (1.166)

whereτT is the Lorentz invariant optical depth for Thomson scattering,

S (x, η) = τT
1
x′

∫ ∞

0
x′1dx′1

∫

d2ω′1 Riso(x′1→ x′)nbb(x1) (1.167)

is the source function, and we used here the fact that the photon occupation num-
ber is Lorentz invariant. The energy transformation is given by Doppler shift
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x = x′D andx1 = x′1D1 with the Doppler factors

D = 1
Γb(1− βbη)

, D1 = Γb(1+ βbη
′
1). (1.168)

The relation between the angles is given by the aberration formula:

η′ =
η − βb

1− βbη
. (1.169)

We note here thats0 is equal to unity with high accuracy, because scattering is in
deep Thomson regime. The calculation of the redistributionfunctionRiso involves
numerical integration over the Maxwellian distribution (see equation (1.133); note
that f1 = f2 = 0) f0 = f ′e(γ) = f ′e(p)/N′e given by equation (1.164). Thus the source
function (1.167) involves 4-dimensional integral to be taken numerically, which is
rather time-consuming.

1.6.2 Scattering in the external frame

We can also compute the same effect directly in the external frame. The electron
Lorentz factor in the comoving frame is related to the electron four-momentum in
the external frame as

γ′ = Γb(γ − pβbηe), (1.170)

whereηe is the cosine of the angle between the electron momentum and the direc-
tion of cloud motion. Because the distribution function is Lorentz invariant, we
easily get the electron distribution in the external frame:

fe(p) = f ′e(p′) = N′e
exp(−γΓb/Θ)
4πΘK2(1/Θ)

exp(p Γb βb ηe/Θ) (1.171)

≈ N′e
exp(−γ/Θ)

4πΘK2(1/Θ)

[

1+
β2

t

6
(p2 − 3γΘ) + βt pηe +

β2
t p2

3
P2(ηe)

]

,

whereβt = βb/Θ and we expanded the expression up to the second order inβb.
The electron density in that frame is:

Ne =

∫

fe(p)d3p = ΓbN′e. (1.172)

The corresponding termsfk of the electron distribution can be obtained from equa-
tion (1.171) noting thatfe(γ, ηe) = fe(p)/ΓbN′e. The change to the occupation
number is:

∆n(x, η) = −τTs0(x, η)nbb(x) + S (x, η). (1.173)

The scattering cross-section is given by equation (1.26) and in the Thomson limit
it is just s0(x, η) ≈ 1− βbη. The source function is now

S (x, η) = τT
1
x

∫ ∞

0
x1 nbb(x1) dx1

∫

d2ω1 R(x1→ x), (1.174)
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where the redistribution functionR given by equation (1.133) is averaged over
directions of incident photons, but still depends on the scattered photon direc-
tion η. This form of the source function is more favorable comparedto equation
(1.167) from numerical point of view, as it can be tabulated in advance at a given
grid of photon energies and angles. Computed directly it still involves numerical
calculations of 4-dimensional integrals.

1.6.3 Isotropic scattering in the Thomson regime in the elec-
tron rest frame

In the Thomson limit (as in the case of the Sunyaev-Zeldovicheffect), the cal-
culations in the external frame can be dramatically simplified. We can use the
azimuthally averaged approximate expression (1.145), (1.161), and (1.162) for
the redistribution functions:

∫

d2ω1 R(x1→ x) = 2π
∫ 1

−1
dµ

3
8

∞
∫

γ∗(x,x1,µ)

dγ
[

f0R0 + f1R1 + f2R2

]

. (1.175)

Interestingly,R0 does not depend onγ and in expressions forR1 andR2 it comes
only through cosθ ≈ (x1 − x)γ/Qp (becauseq ≪ x, x1, see equation (1.107)). For
the electron distribution given by equation (1.171), the integrals overγ thus can
be taken analytically:

∫

dγ f0R0 = C
1
Γb

[

1−
β2

b

6

(

1
Θ2
+ 1+

γ∗

Θ
−

(

γ∗

Θ

)2
)]

,

∫

dγ f1R1 = C βb η
x1µ − x

Q
x1 − x

Q

(

1+
γ∗

Θ

)

, (1.176)

∫

dγ f2R2 = C
β2

b

3
P2(η)

x2
1P2(µ) − 2xx1µ + x2

Q2

×
[

P2

(

x1 − x
Q

) (

2+ 2
γ∗

Θ
+

(

γ∗

Θ

)2
)

+
1

2Θ2

]

,

where the proportionality coefficient C = R0 exp(−γ∗/Θ)/ [4πK2(1/Θ)]. The
zeroth order term inβb was derived by Poutanen (1994), see also Poutanen &
Svensson (1996).

Evaluation of the source function (1.174) now involves onlytwo numerical in-
tegrations over the photon energyx1 and cosine of the scattering angleµ, reducing
the computational time by 2-3 orders of magnitude.

For all three methods we numerically compute the correctionfunction for the
black body intensity

∆I(x) =
1
τT

x3
t ∆n(x, η), (1.177)

and compare the results of calculations in Figure 1.11. The three different methods
give nearly identical results.
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Figure 1.11: Deviation from the black body spectrum of cosmic microwave
background radiation withTcmb = 2.7 K resulting from the Compton scattering
in a moving cloud of isotropic hot electrons (thermal and kinematic Sunyaev-
Zeldovich effects). The electron temperature isΘ = 0.03 and the cloud velocity
βb = 0.01. The solid curves are computed using equations (1.166)–(1.167), con-
sidering scattering in the cloud frame, where electrons areisotropic. The dashed
curves show the results using the formalism developed in this chapter for anisotro-
pic electrons, given by equations (1.173)–(1.174). The dotted curves correspond
to the semi-analytical approximation of the angle-averaged redistribution func-
tion given by equations (1.175)–(1.176). The three different methods give nearly
identical results. The three curves from bottom to the top correspond to the three
viewing angles withη = −0.98, 0,+0.98. The dash-dotted curves show the ana-
lytical approximation of Sazonov & Sunyaev (1998), which includes terms up to
second order inβb andΘ, as well as a cross-termβbΘ. It works reasonably well
up to the temperaturesΘ < 0.02, but fails at higher temperatures in Wien tail.
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1.7 Conclusions

We have developed the exact analytical theory of Compton scattering by anisotro-
pic distribution of electrons that can be represented by a second order polynomial
over cosine of some angle (dipole and quadrupole anisotropies). For the total
cross-section, we reduce the 9-dimensional integral to a single integral over the
electron energy. Analogous expressions have been derived for the mean energy of
the scattered photons and its dispersion. We also obtained analytical expressions
for the radiation pressure force acting on the electron gas.These moments can be
used for analytical estimations as well as for the numericalsolutions of the kinetic
equations in the Fokker-Planck approximation (see e.g. Vurm & Poutanen 2009).

Furthermore, the expression for the redistribution function describing angle-
dependent Compton scattering by anisotropic electrons is reduced to a single in-
tegral over the electron energy. Exact analytical formulaevalid for any photon
and electron energy are derived in the case of monoenergeticelectrons. We have
also derived approximate expressions for the redistribution function, assuming
isotropic scattering in the electron rest frame, which are very accurate in the case
of relativistic electrons interacting with soft photons inthe Thomson regime.

We applied the developed formalism to the accurate calculations of the thermal
and kinematic Sunyaev-Zeldovich effects for arbitrary electron distributions. A
very similar problem arises in outflowing coronae around accreting black holes
and neutron stars, where the bulk motion causes electron anisotropy. Another
application could be a computation of the radiative transport in the synchrotron
self-Compton sources with ordered magnetic field, where theelectron distribution
can have strong deviations from the isotropy because of pitch angle-dependent
cooling. These problems will be considered in future publications.



Chapter 2

Photon–photon pair production and
pair annihilation

2.1 Introduction

A large number of astrophysical sources such as jets from active galactic nuclei,
gamma-ray bursts, pulsars as well as some X-ray binaries arecapable of produc-
ing high-energy gamma-ray emission. Radiative modeling ofsuch sources has to
include the treatment of an additional physical process notrelevant at lower en-
ergies: photon–photon pair production, by which two photons can annihilate to
produce an electron–positron pair. The process can take place if xx1 ≥ 1, where
x and x1 are the photon energies inmec2 units, meaning that at least one of the
interacting photons must havex ≥ 1.

Pair production can have a profound effect on the shape of high-energy spec-
tra. First, absorption of energetic photons on lower-energy radiation can atten-
uate the radiative power abovemec2. Secondly, the produced electron–positron
pairs can further modify the spectrum through inverse-Compton scattering and
synchrotron emission. Also, if the inverse-Compton emission produced by the
secondary pairs extends abovemec2, the scattered photons can produce another
generation of electron–positron pairs, which can upscatter further photons etc.,
leading to a so-called pair-cascade (see e.g. Bonometto & Rees 1971; Zdziarski
& Lightman 1985; Svensson 1987). Furthermore, in high compactness sources
such as gamma-ray bursts the secondary pairs can dominate the Thomson opacity
of the source over the electrons associated with protons. Itis therefore obvious
that the pair production process can influence the spectrum over a wide range of
photon energies not limited to high-energy gamma-rays.

To accurately model the effects of pair production and annihilation processes
on both the electron and photon distributions without limitations on energies, we
need to know the exact cross-sections for both processes as well as the spectra of
injected pairs/photons. The exact pair annihilation cross-section was first derived
already by Dirac (1930). A fully general analytic expression for the injected pho-

47
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ton spectrum from annihilating pairs was derived by Svensson (1982), a similar
expression for the injected pair spectrum due to photon–photon annihilation was
found in Boettcher & Schlickeiser (1997). Although correct, their expressions suf-
fer from cancellations in some regions of parameter space. In this chapter we will
instead follow the framework laid out in Nagirner & Loskutov(1999) to derive
all the relevant quantities, and will obtain expressions that are free of cancella-
tions. The treatment is widely analogous to the treatment ofCompton scattering
in Chapter 1.

2.2 Relativistic kinetic equations

The relativistic kinetic equation for electrons accounting for photon–photon pair
production and pair annihilation processes takes the form (ignoring induced terms
as well as electron/positron degeneracy)

p
−
· ∇ñ−(p−) =

r2
e

4
2

λ3
C

∫

d3p+
γ+

d3x1

x1

d3x
x
δ(p

−
+ p

+
− x1 − x) Fγγ

×
[

ñph(x1)ñph(x) − ñ−(p−)ñ+(p+)
]

. (2.1)

Here we have used similar definitions used for the treatment of Compton scat-
tering: dimensionless photon four-momentumx = {x, x} = x{1,ω}, wherex =
hν/mec2, dimensionless electron/positron four-momentump = {γ, p} = {γ, pΩ} =
γ{1, βΩ}, where p =

√

γ2 − 1 andβ = p/γ, the four-gradient∇ = {∂/c∂t,∇}
and the occupation numbers ˜n± and ñph for pairs and photons, respectively. The
invariant reaction rateFγγ is (Berestetskii et al. 1982)

Fγγ =
ξ

ξ1
+
ξ1

ξ
+ 2

(

1
ξ
+

1
ξ1

)

−
(

1
ξ
+

1
ξ1

)2

, (2.2)

where we have defined the four-products between the particles’ momenta as

ξ = p
−
· x = p

+
· x1, ξ1 = p

−
· x1 = p

+
· x. (2.3)

Later we will also need the invariant four-product of the photon momenta defined
as

q = x · x1 = xx1(1−ω · ω1) = xx1(1− µ) = ξ + ξ1, (2.4)

where the last equality arises from conservation laws for energy and momentum.
The kinetic equation can also be written in the form of a transfer equation

(

1
c
∂

∂t
+ βΩ · ∇

)

ñ−(p−) = −σT N+ spa(p−) ñ−(p−) + σT N2
ph

λ3
C

2
jpp(p−), (2.5)
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where the pair annihilation cross-section (in units ofσT) is given by

spa(p−) =
3

32π
2

λ3
CN+

1
γ−

∫

d3p+
γ+

d3x1

x1

d3x
x

ñ+(p+) Fγγ δ(p
−
+ p

+
− x1 − x) (2.6)

and the pair production rate by

jpp(p−) =
3

32π

(

2

λ3
CNph

)2 1
γ−

∫

d3p+
γ+

d3x1

x1

d3x
x

ñph(x)ñph(x1)Fγγδ(p
−
+p

+
−x1−x).

(2.7)
Although no longer manifestly covariant, equation (2.5) isstill relativistically cor-
rect and can be written in any frame.

The kinetic equation for photons can be written as

x · ∇ñph(x) =
r2

e

2
2

λ3
C

∫

d3x1

x1

d3p−
γ−

d3p+
γ+

δ(p
−
+ p

+
− x1 − x) Fγγ

×
[

ñ−(p−)ñ+(p+) − ñph(x1)ñph(x)
]

. (2.8)

Note that the extra factor 1/2 on the right-hand side of equation (2.1) compared
to equation (2.8) arises due to double counting of the photonstates. In the form
of the radiative transfer equation we have

(

1
c
∂

∂t
+ ω · ∇

)

ñph(x) = −σT Nph spp(x) ñph(x) + σT N− N+
λ3

C

2
jpa(x), (2.9)

where the pair production cross-section is

spp(x) =
3

16π
2

λ3
CNph

1
x

∫

d3x1

x1

d3p−
γ−

d3p+
γ+

ñph(x1) Fγγ δ(p
−
+ p

+
− x1 − x) (2.10)

and the emissivity due to pair annihilation

jpa(x) =
3

16π

(

2

λ3
C

)2 1
N−N+

1
x

∫

d3x1

x1

d3p−
γ−

d3p+
γ+

ñ−(p−)ñ+(p+)Fγγδ(p
−
+p
+
−x1−x).

(2.11)

2.3 Pair production and annihilation rates

We will now turn to the calculation of the injection rates of pairs and photons
given by equations (2.7) and (2.11) respectively. In what follows we will assume
isotropic particle and photon distributions.

The isotropic pair injection rate (2.7) can be written in theform

jpp(p−) = 3π

(

2

λ3
CNph

)2 1
γ−p−

∫ ∞

x(L)
ñph(x) dx

∫ ∞

x(L)
1

ñph(x1) dx1 Rγγ(γ−, x, x1), (2.12)
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where we have defined

Rγγ(γ−, x, x1) =
1
2

1
(4π)2

xx1p−

∫

d3p+
γ+

d2ω d2ω1 Fγγ δ(p
−
+ p

+
− x1− x). (2.13)

Similarly, the photon emissivity due to pair annihilation is

jpa(x) = 6π

(

2

λ3
C

)2 1
N−N+

1
x2

∫ ∞

γ
(L)
+

ñ+(p+)dγ+

∫ ∞

γ
(L)
−

ñ−(p−)dγ−R⋆
γγ(x, γ−, γ+), (2.14)

where

R⋆
γγ(x, γ−, γ+) =

1
2

1
(4π)2

xp−p+

∫

d3x1

x1
d2Ω−d2Ω+Fγγ δ(p

−
+ p

+
− x1− x). (2.15)

Before proceeding, let’s compare the quantitiesRγγ andR⋆
γγ defined by equations

(2.13) and (2.15). Both of them contain integrals over the directions of three
particles’ momenta and an integral over one particle’s energy. Due to rotational
symmetry, there are no angles left in the problem after integrations over three solid
angles, and the result does not depend on our choice of these three particles, over
the directions of which we are integrating1. After the angular integrals we are left
with integrals of type

∫

dγ+δ(γ+ + γ− − x1 − x) · ... and
∫

dx1δ(γ+ + γ− − x1 − x) · ..., (2.16)

which are equivalent. We can therefore see thatRγγ andR⋆
γγ are related simply as

R⋆
γγ(x, γ−, γ+) = Rγγ(γ−, x, γ− + γ+ − x). (2.17)

The problem of findingjpp(p−) and jpa(x) thus reduces to the calculation of a
single functionRγγ(γ−, x, x1).

The calculation ofRγγ will proceed in two steps. Following Nagirner & Losku-
tov (1999), we will first calculate the quanity

Fγγ(γ−, x, x1, µ) =
1
2π

p−

∫

d3p+
γ+

d2Ω− Fγγ δ(p
−
+ p

+
− x1 − x), (2.18)

which has the physical meaning of angle-averaged pair production rate from pho-
tons ‘colliding’ with a given angle of incidence. OnceFγγ is known, we can
calculateRγγ from

Rγγ(γ−, x, x1) =
1
8

xx1

∫ µ+

µm

Fγγ(γ−, x, x1, µ) dµ. (2.19)

The integration limits forµ will be given below.

1To see that this is true we can formally add an integration over the directions of the remaining
particle, which amounts to multiplication by 4π. We can then change the order of integration and
remove an integral over the directions of another particle,which is equivalent to division by 4π.
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2.3.1 Integration over electron directions

After using the three-dimensional delta-function to take the integral overd3p+, we
can cast equation (2.18) in the form

Fγγ(γ−, x, x1, µ) =
1
2π

p−

∫

d2Ω− Fγγ δ(ξ + ξ1 − q), (2.20)

where we have used the identity

δ(γ+ + γ− − x1 − x) = γ+ δ(ξ + ξ1 − q). (2.21)

Writing the quantitiesξ andξ1 as

ξ = x(γ − pΩ · ω), ξ1 = x1(γ − pΩ · ω1), (2.22)

the argument of the delta-function becomes (hereafter dropping the ‘−’ for elec-
tron quantities)

ξ + ξ1 − q = γ−(x + x1) − pΩ · (xω + x1ω1) − xx1(1− µ). (2.23)

In analogy with the treatment of Compton scattering, it is easiest to perform the
angular integration in a coordinate system where the polar axis is in the direction
of xω + x1ω1. The corresponding unit vector is defined as

n =
xω + x1ω1

Q
, (2.24)

where

Q2 = x2 + x2
1 + 2xx1µ = (x + x1)

2 − 2q. (2.25)

In this system

d2Ω = dφ d cosθ, where cosθ = Ω · n. (2.26)

Using this in equation (2.20), we can immediately take the integral over the polar
angleθ, giving

Fγγ(γ, x, x1, µ) =
1
2π

p
∫

dφ
∫

d cosθ Fγγ δ[γ(x + x1) − pQ cosθ − q]

=
1

2πQ

∫

dφ Fγγ. (2.27)

The invariant reaction rateFγγ depends on the polar angleθ throughξ and ξ1,
which we have to substitute from

cosθ =
γ(x + x1) − q

pQ
. (2.28)
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To integrate equation (2.27) over the azimuth, we need to specify the reference
direction from whichφ is measured, which we choose to be the projection of the
photon directionω to the plane perpendicular ton. Defining

cosκ = ω · n = x + x1µ

Q
, sinκ =

x1

√

1− µ2

Q
, (2.29)

we then have

ω = (sinκ, 0, cosκ), Ω = (sinθ cosφ, sinθ sinφ, cosθ). (2.30)

The dependence ofFγγ(ξ, ξ1) on the azimuthal angle comes in through the scalar
product

ω ·Ω = cosκ cosθ + sinκ sinθ cosφ, (2.31)

which entersξ andξ1 linearly through

ξ = x(γ − pω ·Ω) and ξ1 = q − ξ. (2.32)

Therefore we can writeξ andξ1 in the form

ξ =
q
Q

(d+ − b cosφ) , ξ1 =
q
Q

(d− + b cosφ) , (2.33)

where, using equations (2.28), (2.29) and (2.31), we have

d+ = γ(x1 − x) + x(x + x1µ),

d− = γ(x − x1) + x1(x1 + xµ) = Q2 − d+ (2.34)

and

b =
√

r
√

p2Q2 − [

γ(x + x1) − q
]2
, r =

√

1+ µ
1− µ. (2.35)

Writing the rateFγγ in the form

Fγγ =
q2 + 2q − 2

q

(

1
ξ
+

1
ξ1

)

− 1
ξ2
− 1

ξ2
1

− 2, (2.36)

we can see from equations (2.27), (2.33) and (2.36) that we need to calculate
integrals of the following types:

∫ 2π

0

dφ
d± ∓ b cosθ

=
2π

√

d2
± − b2

,

∫ 2π

0

dφ
(d± ∓ b cosθ)2

=
2πd±

(d2
± − b2)3/2

. (2.37)
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The pair production rateFγγ thus becomes (Nagirner & Loskutov 1999)

Fγγ(γ−, x, x1, µ) =
q2 + 2q − 2

q2

(

1
a+
+

1
a−

)

− 1
q2

(

d+
a3
+

+
d−
a3
−

)

− 2
Q
, (2.38)

where we have defined

a2
+ =

d2
+ − b2

Q2
= r + (γ − x)2,

a2
− =

d2
− − b2

Q2
= r + (γ − x1)

2. (2.39)

2.3.2 Integration over photon directions

To calculate the angular integral in equation (2.19), it is convenient to first change
the integration variable fromµ to q, making use of the relationq = xx1(1 − µ).
This gives

Rγγ(γ−, x, x1) =
1
8

∫ q(U)

q(L)
Fγγ(γ−, x, x1, µ) dq. (2.40)

Now all quantities appearing inFγγ have to be expressed in terms ofq rather than
µ. Looking at equation (2.38), we see that we need

d± = s± − q, a2
± =

2xx1

q
(1+ w±q), (2.41)

where

s+ = x(x + x1) + γ(x1 − x), s− = x1(x + x1) + γ(x − x1) (2.42)

and

w+ =
(γ − x)2 − 1

2xx1
, w− =

(γ − x1)2 − 1
2xx1

. (2.43)

The integrand in equation (2.40) now takes the form

Fγγ(γ−, x, x1, µ) =
1
√

2xx1

q2 + 2q − 2
q3/2















1
√

1+ w+q
+

1
√

1+ w−q















− 1
(2xx1)3/2√q

[

s+ − q
(1+ w+q)3/2

+
s− − q

(1+ w−q)3/2

]

− 2
Q
, (2.44)
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whereQ2 = (x + x1)2 − 2q. The required integrals are

∫ √
q dq

√

1+ wq
=

q3/2

h
[A(h) − A0(h)] ,

∫

dq
√

q
√

1+ wq
= 2
√

q A0(h),

∫

dq

q3/2
√

1+ wq
= − 2
√

q
A(h),

∫ √
q dq

(1+ wq)3/2
=

2q3/2

h

[

A0(h) − 1
A(h)

]

,

∫

dq
√

q(1+ wq)3/2
=

2
√

q

A(h)
,

∫

dq
Q
= −Q, (2.45)

whereh = wq and

A0(h) =















ln(
√

h +
√

1+ h)/
√

h if h ≥ 0,

arcsin(
√
−h)/

√
−h if h ≤ 0,

(2.46)

A(h) =
√

1+ h. (2.47)

After a little rearrangement, the angle-averaged pair production rate (2.40) finally
becomes

Rγγ(γ, x, x1) =
1
4

[ √

(x + x1)2 − 2q + T+(γ, x, x1, q) + T−(γ, x, x1, q)
]

∣

∣

∣

∣

q(U)

q(L)
, (2.48)

where the primitive functions are (Nagirner & Loskutov 1999)

T±(γ, x, x1, q) =
q3/2

(2xx1)3/2
(xx1 − 1)

A(h±) − A0(h±)
h±

+

√

2
q

A(h±)√
xx1

−
√

q

(2xx1)3/2

[

s± − q
A(h±)

− 4xx1A0(h±)

]

, (2.49)

while s± andh± = qw± are determined by equations (2.42) and (2.43), respec-
tively. The integration limitsq(L) andq(U) in equations (2.40) and (2.48) are given
in Section 2.6 below. Expressions similar to (2.48) and (2.49) have been derived
by Svensson (1982) and Boettcher & Schlickeiser (1997). However, their formu-
lae suffer from cancellations whenh approaches zero, while in equation (2.49)
cancellation appears only in the term [A0(h) − A(h)]/h, which can easily be com-
puted via Taylor series for smallh.
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2.4 Total pair production cross-section

Let’s write the pair production cross-section given by equation (2.10) in the fol-
lowing form

spp(x) =
2

λ3
CNph

1
x

∫

d3x1

x1
ñph(x1) s0(q) q, (2.50)

where

s0(q) =
3

16π
1
q

∫

d3p−
γ−

d3p+
γ+

Fγγ δ(p
−
+ p

+
− x1 − x). (2.51)

To calculates0(q), we first take the integral overd3p+ by making use of the three-
dimensional delta-function, leaving us with

s0(q) =
3

16π
1
q

∫

d3p−
γ−

Fγγ δ(ξ + ξ1 − q), (2.52)

where we have used the identity (2.21). The subsequent integral over d3p− is
most easily taken in the centre-of-momentum (CM) frame of the interaction. In
this frame we have

xcm+ x1,cm = 0, q = xx1(1− µ) = 2x2
cm. (2.53)

The delta-function in equation (2.52) thus becomes (dropping ‘−’ from p)

δ(ξ + ξ1 − q) = δ(p · (x + x1) − x · x1) =
δ(γcm− xcm)

2xcm
, (2.54)

giving

s0(xcm) =
3

64π
pcm

x3
cm

∫

Fγγ d2Ωcm (2.55)

after taking the integral overγcm. Here we have definedpcm =
√

x2
cm − 1 and

have made use of the Lorentz invariance ofd3p/γ. Hereafter we writes0 as a
function of xcm instead ofq, the two designations are equivalent owing to the
relationq = 2x2

cm.
In the CM-frame the invariant four-productsξ andξ1 enteringFγγ become

ξ = xcm(γcm− pcm ζcm),

ξ1 = xcm(γcm− pcm ζ1,cm) = xcm(γcm + pcm ζcm), (2.56)

where we have introduced cosines of the angles between the electron and photon
momenta in the CM-frame as

ζcm = Ωcm · ωcm ζ1,cm = −ζcm = Ωcm · ω1,cm. (2.57)
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Writing the differential solid angle in (2.55) asd2
Ωcm = dζcmdφcm, we can see that

the azimuthal integral can be taken trivially since the integrand has no dependence
onφcm. Making use of relations (2.56), the remaining integral canbe written as

s0(xcm) =
3
32

1
x4

cm

∫ ξ(U)

ξ(L)
Fγγ dξ =

3
32

1
x4

cm

∫ ξ(U)

ξ(L)
Fγγ dξ1 (2.58)

where the integration limits are given by

ξ(L) = xcm(xcm − pcm), ξ(U) = xcm(xcm + pcm). (2.59)

Inserting the invariant cross-section (2.36) into (2.58) and integrating, we get

s0(xcm) =
3
8

pcm

x3
cm

[

1
βcm

(

1+
1

x2
cm

− 1
2x4

cm

)

ln

(

1+ βcm

1− βcm

)

− 1
x2

cm

− 1

]

, (2.60)

whereβcm ≡ pcm/γcm = pcm/xcm. The quantitys0 has the physical meaning of the
centre-of-momentum frame cross-section for pair production.

For isotropic target photon distribution we can write the cross-section (2.50)
in the following form

spp(x) = 4π
2

λ3
CNph

∫

x2
1 dx1σpp(x, x1) ñph(x1), (2.61)

where

σpp(x, x1) =
1
2π

1
xx1

∫

dµdφ x2
cm s0(xcm) (2.62)

and we have used the relationq = 2x2
cm. Sincexcm does not depend onφ, the

azimuthal integral is again trivial. To take the last integral it is natural to change
the integration variable fromµ to xcm, using the second relation in (2.53),

dµ = −4xcmdxcm

xx1
, (2.63)

so that

σpp(x, x1) =
4

(xx1)2

∫

√
xx1

1
x3

cm dxcm s0(xcm). (2.64)

The lower integration limit in equation (2.64) reflects the requirement that in the
CM-frame the energies of the pair producing photons need to be at least equal to
the electron/positron rest energy, whereas the upper limit is simply the maximum
attainable CM-frame energy of photons with energiesx and x1 in the lab frame
(i.e. a head-on collision).
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Inserting the CM-frame cross-section (2.60) into equation(2.64) and perform-
ing the integrals, we arrive at the final expression for the photon–photon pair pro-
duction cross-section (Gould & Schréder 1967; Zdziarski 1988):

σpp(x, x1) =
3
8

1

x2x2
1

{

2v2 + 2v + 1
v + 1

ln w − 2(2v + 1)
√

v
√

v + 1
− ln2 w + 2 ln2 (w + 1)

+ 4Li2

(

1
w + 1

)

− π2

3

}

, (2.65)

where

v = xx1 − 1 and w =

√
v + 1+

√
v

√
v + 1−

√
v

(2.66)

and Li2 is the dilogarithm defined by

Li 2(r) = −
∫ r

0

ln(1− s)
s

ds. (2.67)

2.5 Total pair annihilation cross-section

The derivation of the pair annihilation cross-section follows along the same lines
as the derivation of the pair production cross-section. Thecross-section (2.6) is
written as

spa(p−) =
2

λ3
CN+

1
γ−

∫

d3p+
γ+

ñ+(p+) s0(qe) (qe + 1), (2.68)

where

s0(qe) =
3

32π
1

(qe + 1)

∫

d3x
x

d3x1

x1
Fγγ δ(p

−
+ p

+
− x1 − x) (2.69)

and

qe = p
+
· p
−
= γ+γ−(1− β+β−Ω+ ·Ω−) = γ+γ−(1− β+β−µe) = ξ + ξ1 − 1.

(2.70)

After using the delta-function to take the integral overd3x1 in equation (2.69), we
get

s0(qe) =
3

32π
1

(qe + 1)

∫

d3x
x

Fγγ δ(ξ + ξ1 − qe − 1), (2.71)

where we have used the identity

δ(γ+ + γ− − x1 − x) = x1 δ(ξ + ξ1 − qe − 1). (2.72)

Passing into the CM-frame and using

p+,cm + p−,cm = 0, qe = γ+γ−(1− β+β−µe) = γ
2
cm+ p2

cm = 2γ2
cm− 1 (2.73)
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and

δ(ξ + ξ1 − qe − 1) = δ(x · (p
+
+ p

−
) − p

+
· p
−
− 1) =

δ(γcm − xcm)
2γcm

, (2.74)

the cross-section (2.71) becomes

s0(γcm) =
3

128π
1
γ2

cm

∫

Fγγ d2ωcm. (2.75)

Here we have again writtens0 as a function ofγcm instead ofqe, using the second
relation in (2.73).

In the CM-frame the invariant four-productsξ andξ1 enteringFγγ are

ξ = p
−
· x = xcm(γcm− pcm ζ−,cm),

ξ1 = p
+
· x = xcm(γcm− pcm ζ+,cm) = xcm(γcm+ pcm ζ−,cm), (2.76)

where

ζ−,cm = Ω−,cm · ωcm ζ+,cm = −ζcm = Ω+,cm · ωcm. (2.77)

The differential solid angle in (2.75) can be written asd2
ωcm = dζ−,cmdφcm, allow-

ing the azimuthal integral to be taken trivially. Using the relations (2.76), we can
write the remaining integral as

s0(γcm) =
3
64

1

γ3
cmpcm

∫ ξ(U)

ξ(L)
Fγγ dξ =

3
64

1

γ3
cmpcm

∫ ξ(U)

ξ(L)
Fγγ dξ1, (2.78)

where the integration limits are given by (2.59), withxcm = γcm. Upon integration
we get

s0(γcm) =
3
16

1
γ2

cm

[

1
βcm

(

1+
1
γ2

cm
− 1

2γ4
cm

)

ln

(

1+ βcm

1− βcm

)

− 1
γ2

cm
− 1

]

, (2.79)

which can be regarded as the centre-of-momentum frame cross-section for pair
annihilation.

For isotropic target electron/positron distribution the cross-section (2.68) can
be written as

spa(p−) = 4π
2

λ3
CN+

∫ ∞

0
p2
+dp+ σpa(γ+, γ−) ñ+(p+), (2.80)

where

σpa(γ+, γ−) =
1
2π

1
γ+γ−

∫

dµedφ γ
2
cm s0(γcm). (2.81)
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The CM-frame energyγcm depends only on the relative angleµe between the anni-
hilating particles, making the azimuthal integral in (2.81) trivial. For the remain-
ing integral we use the second relation in (2.73) to change the integration variable
from µ to γcm through

dµ = −4γcmdγcm

p+p−
. (2.82)

This gives

σpa(γ+, γ−) =
4

γ+γ−p+p−

∫ γ+cm

γ−cm

γ3
cm dγcm s0(γcm). (2.83)

The integration limits in equation (2.83) can be read from (2.73) by settingµe =

−1 and 1, giving
γ±cm =

√

(γ+γ− + 1± p+p−) /2. (2.84)

All the integrals in (2.83) are elementary, the final result for the total pair annihi-
lation cross-section is found to be (e.g. Svensson 1982)

σpa(γ+, γ−) =
3
8

1
γ+γ−p+p−

[

β3
cmγ

2
cmL(βcm) − 2γ2

cm+
3
4

L2(βcm)

]
∣

∣

∣

∣

∣

∣

γ+cm

γ−cm

, (2.85)

where we have definedL(β) = ln[(1 + β)/(1− β)].

2.6 Boundaries

The limits of integration in equations (2.19) and (2.40) arise from the requirement
that | cosθ| ≤ 1 in equation (2.28), which constrains the allowed region inthe
parameter space ofx, x1, γ− andµ. Expressingµ from the inequality

−1 ≤ γ−(x + x1) − q
pQ

≤ 1, (2.86)

we get the conditionµm ≤ µ ≤ µ+, where

µm =



























µ− if 1 < γ− < γ
(−)(x, x1,−1),

µ− if γ(+)(x, x1,−1) < γ− < γm,

−1 if γ(−)(x, x1,−1) ≤ γ− ≤ γ(+)(x, x1,−1)

(2.87)

and

µ± = 1− q∓
xx1

. (2.88)

Here we have defined

q± = γ+γ− + 1± p+p−, (2.89)
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whereγ+ = x + x1 − γ− andp± =
√

γ2
± − 1, as well as

γ(±)(x, x1,−1) =
1
2













x + x1 ± |x − x1|
√

1− 1
xx1













, γm = x + x1 − 1. (2.90)

The corresponding limits forq in equation (2.40) read

q(U) =



























q+ if 1 < γ− < γ
(−)(x, x1,−1),

q+ if γ(+)(x, x1,−1) < γ− < γm,

2xx1 if γ(−)(x, x1,−1) ≤ γ− ≤ γ(+)(x, x1,−1)

(2.91)

andq(L) = q−.
Demanding thatµm ≤ µ+, i.e. that the integral in equation (2.19) exist, will

give us a constraint on the allowed region in energy space of the particles/photons.
In fact, sinceµm = max{−1, µ−} and we always haveµ− ≤ µ+, we only need
to require thatµ+ ≥ −1. Given the energies of the annihilating photons, this
determines the allowed range of electron/positron energies that can be produced.
We find

γ(−)(x, x1,−1) ≤ γ− ≤ γ(+)(x, x1,−1) if x + x1 > 2xx1,
1 ≤ γ− ≤ γm if x + x1 ≤ 2xx1.

(2.92)

The integration limits in equations (2.12) and (2.14) are obtained by expressing
the necessary variables from conditions (2.92) in terms of the rest. For equation
(2.12) we need constraints on thex, x1 plane in terms ofγ−. After a lengthy but
straightforward derivation we find the lower limits of the allowed region to be

x(L) =
1
2
γ−(1− β−), x(L)

1 =



























x/{[2x − γ−(1+ β−)]γ−(1+ β−)} if x > x+,

x/{[2x − γ−(1− β−)]γ−(1− β−)} if x < x−,

γ− + 1− x if x− ≤ x ≤ x+,
(2.93)

where we have defined

x± =
1
2
[

1+ γ−(1± β−)
]

. (2.94)

Because we always havex(L)
1 ≥ x(L), the latter sets a lower limit for the energy of

either photon for producing an electron (or positron) of energy γ−.
For equation (2.14) we need constraints on theγ+, γ− plane in terms ofx,

which yield the lower limits

γ
(L)
− =







































γ(−) if x ≤ 1/2,

γ(−) if 1/2 < x < 1 andγ+ < γB,

γ(+) if x ≥ 1 andγ+ < γB,

1 in all other cases,

γ
(L)
+ =















γA if x < 1/2,

1 if x ≥ 1/2,
(2.95)
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where

γ(±) =
1
2

(

F± +
1

F±

)

, F± = 2x − γ+(1± β+), (2.96)

and

γA =
4x2 + 1

4x
, γB =

2x2 − 2x + 1
2x − 1

. (2.97)
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Chapter 3

Synchrotron radiation

3.1 Introduction

Along with Compton scattering, sychrotron radiation can beregarded as one of
the most important radiative processes in high-energy astrophysics. One of the
reasons for this is that the emission from virtually all sources capable of produc-
ing high-energy radiation originates from highly conductive plasma, in which it
is natural to expect a certain amount of magnetization. Also, the environments
in the vicinity of compact objects tend to be strongly magnetized, the field can
be generated in the accretion flow by dynamo action or can be anchored to the
central object (neutron stars). In sources like blazars andgamma-ray bursts where
outflows are produced, the plasma can carry the generated field to large distances
from the central object into regions where the flow energy gets dissipated (e.g.
through shocks), with profound effects on the produced emission.

The theory of synchrotron emission is well established (forreviews, see e.g.
Ginzburg & Syrovatskii 1965, 1969; Pacholczyk 1970). The basic formula for
the radiation spectrum from an electron moving with arbitrary Lorentz factor in a
(macroscopic) circular orbit was given already by Schott (1907), albeit in a dif-
ferent context. Thereafter nearly forgotten for 40 years, its importance became
apparent only in the late forties when emission from energetic charged particles
in a magnetic field was discovered. In a weak magnetic field where classical
theory is applicable, Schott’s formula is exact. However, its direct application
to relativistic particles is not feasible, since it involves summation over a large
number of closely packed harmonics. In the ultrarelativistic limit the synchrotron
emissivity of electrons moving with a given pitch angle is well known (Westfold
1959; Le Roux 1961; see also Scheuer 1968; Ginzburg et al. 1968), the expres-
sion for randomly oriented magnetic fields was derived by Crusius & Schlickeiser
(1986) (see also Ghisellini & Svensson 1991). The trans-relativistic regime is least
straightforward. One possible approach is to calculate thefirst couple of (tens of)
harmonics separately and substitute the summation over harmonics by integration
for the rest.

63
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In this chapter we will derive the kinetic equations that describe the evolution
of particle and photon distributions due to synchrotron emission and absorption.
The electron equation will then be written in the form of the Fokker-Planck equa-
tion to facilitate practical application. Finally, we willgive the formulae for single
electron emissivities in different limits, in terms of which we can express all the
coefficients entering the kinetic equations.

3.2 Kinetic equations

Writing down the kinetic equations for particles and photons interacting through
synchrotron processes is somewhat less straightforward than in the case of pro-
cesses involving binary particle collisions like e.g. Compton scattering and pair-
production. The reason for this is that the interaction takes place in and through
a field that in is ‘external’ and prescribed. This means that the conservation laws
of the total four-momentum no longer hold as they do for binary collisions. More
specifically, the conservation of three-momentum breaks down, while the total en-
ergy is still conserved. Furthermore, since we are considering a tangled magnetic
field with no electric field, we are bound to a particular frameof reference. There-
fore the kinetic equations cannot be written in a manifestlycovariant form valid
in any frame as they were for Compton scattering and pair-production.

To deduce the form of the kinetic equations for synchrotron processes, it is
simplest to consider generic discrete energy levels of electrons in a magnetic field
and study the transitions between these levels due to synchrotron emission and
absorption (see e.g Twiss 1958; McCray 1969; Ghisellini & Svensson 1991). We
will look at these transitions from the point of view of electrons and photons in
turn.

3.2.1 Electron equation

Let’s consider an isotropic distribution of electrons and photons in a volume∆V in
a tangled magnetic field. In such case we can label the electron quantum states by
their energyEi ≡ mec2γi (which we regard as doubly degenerate due to spin, ne-
glecting spin-field interaction). The occupation numbers for electrons and photons
are defined as ˜ni andñph, respectively. The transition probabilities/rates between
statesi and j are described by Einstein coefficient Ai j. Note that since we are
going to write all the rates in terms of occupation numbers, the Einstein coeffi-
cients describing spontaneous and stimulated emission as well as absorption all
coincide.

Let’s consider an electron statei and write down the rates for all transitions
from and to this level. The rate of spontaneous downward transitions from level
i, resulting in the emission of a photon with energy in the interval (x, x + dx), can
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be written as

dN−i
dt dx

∣

∣

∣

∣

∣

∣

sp.em.

=
∑

E j<Ei

ñi Ai j δ(γi − γ j − x), (3.1)

wherex = hν/mec2, N−i denotes the number of transitions and the delta-function
plays the role of the line ‘profile’φi j and enforces energy conservation. The sum is
to be taken over all statesj that haveE j < Ei. The total transition rate is obtained
simply by integrating overx, giving

dN−i
dt

∣

∣

∣

∣

∣

∣

sp.em.

=
∑

E j<Ei

ñi Ai j. (3.2)

Similarly, the transition rate from leveli due to stimulated emission is

dN−i
dt dx

∣

∣

∣

∣

∣

∣

st.em.

=
∑

E j<Ei

ñph(x) ñi Ai j δ(γi − γ j − x), (3.3)

whereas the rate of transitions to upper levels resulting from absorption of a pho-
ton from energy range (x, x + dx) is

dN−i
dt dx

∣

∣

∣

∣

∣

∣

abs.

=
∑

E j>Ei

ñph(x) ñi Ai j δ(γ j − γi − x). (3.4)

The total rates are again obtained by integrating equations(3.3) and (3.4) overx.
Analogously, let us write the rates for all the transitionsto level i. Due to

spontaneous and stimulated emission from upper energy levels we have

dN+i
dt dx

∣

∣

∣

∣

∣

∣

em.

=
∑

E j>Ei

[1 + ñph(x)] ñ j Ai j δ(γ j − γi − x), (3.5)

while the upward transitions from lower levels due to absorption give

dN+i
dt dx

∣

∣

∣

∣

∣

∣

abs.

=
∑

E j<Ei

ñph(x) ñ j Ai j δ(γi − γ j − x). (3.6)

Our aim is to write all the above rates in terms of a single emissivity Pn(x, γi),
which we define as the number of photons emitted in unit volumeand unit time
into interval (x, x + dx) due to spontaneous emission, normalized to one electron:

Pn(x, γi) ≡
dNph

dt dx

∣

∣

∣

∣

∣

∣

sp.em.

=
∑

E j<Ei

Ai j δ(γi − γ j − x). (3.7)

Passing into the continuous limit of electron states using
∑

j

→ 2

λ3
C

∆V
∫

d3p j, (3.8)
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wherep j =

√

γ2
j − 1, we get

Pn(x, γi) =
2

λ3
C

∆V
∫

d3p j Ai j δ(γi − γ j − x) =
2

λ3
C

4π γ j p j Ai j ∆V, γ j = γi − x.

(3.9)

We will also need an expression for sums over ‘upper’ energy levels, i.e.

∑

E j>Ei

Ai j δ(γ j − γi − x)→ 2

λ3
C

∆V
∫

d3p j Ai j δ(γ j − γi − x)

=
2

λ3
C

4π γ j p j Ai j ∆V, where γ j = γi + x, (3.10)

which together with equation (3.9) gives

∑

E j>Ei

Ai j δ(γ j − γi − x) =
γ+i p+i
γi pi

Pn(x, γ
+
i ), where γ+i = γi + x. (3.11)

Using equations (3.7) and (3.11), the transition rates (3.1), (3.3), (3.4), (3.5)
and (3.6) from and to leveli take the form

dN−i
dt dx

∣

∣

∣

∣

∣

∣

em.

= [1 + ñph(x)] ñe(γi) Pn(x, γi), (3.12)

dN−i
dt dx

∣

∣

∣

∣

∣

∣

abs.

= ñph(x) ñe(γi)
γ+i p+i
γi pi

Pn(x, γ
+
i ), (3.13)

dN+i
dt dx

∣

∣

∣

∣

∣

∣

em.

= [1 + ñph(x)] ñe(γ
+
i )
γ+i p+i
γi pi

Pn(x, γ
+
i ), (3.14)

dN+i
dt dx

∣

∣

∣

∣

∣

∣

abs.

= ñph(x) ñe(γ
−
i ) Pn(x, γi), (3.15)

whereγ−i = γi − x andñe(γi) ≡ ñi. The total rate of change of the electron occupa-
tion number on leveli is obtained by subtracting equations (3.12) and (3.13) from
the sum of equations (3.14) and (3.15) and integrating over the photon energy

dñe(γi)
dt

=

∫ ∞

0
dx

γ+i p+i
γi pi

Pn(x, γ
+
i )

{

ñe(γ
+
i ) [1 + ñph(x)] − ñe(γi) ñph(x)

}

−
∫ ∞

0
dx Pn(x, γi)

{

ñe(γi) [1 + ñph(x)] − ñe(γ
−
i ) ñph(x)

}

. (3.16)

Going to the continuous limit and dropping the indices from electron quantities,
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we can write this as

d
dt

[γp ñe(γ)] =
∫ ∞

0
dx

∫ ∞

γ

dγ1 γ1p1
P(x, γ1)

x
δ(γ1 − γ − x)

×
{

ñe(γ1) [1 + ñph(x)] − ñe(γ) ñph(x)
}

−
∫ ∞

0
dx

∫ γ

1
dγ1 γp

P(x, γ)
x

δ(γ − γ1 − x)
{

ñe(γ) [1 + ñph(x)] − ñe(γ1) ñph(x)
}

, (3.17)

where we have formally reintroduced the energy-conservation delta-function to-
gether with integration overγ1. We have also introduced the (energy) emissivity
P(x, γ) ≡ x Pn(x, γ), explicit expressions for which will be given below for both
cyclotron and sychrotron regimes. Equation (3.17) represents the final form of the
kinetic equation for non-degenerate electrons in a magnetic field, accounting for
spontaneous and stimulated cyclo-synchrotron emission aswell as absorption.

3.2.2 Photon equation

The number of photons emitted into an energy interval (x, x+ dx) in unit time due
to spontaneous as well as stimulated emission is

dN+ph

dt dx
=

∑

Ei

∑

E j<Ei

[1 + ñph(x)] ñi Ai j δ(γi − γ j − x), (3.18)

the rate of photon absorption from the same interval is

dN−ph

dt dx
=

∑

Ei

∑

E j<Ei

ñph(x) ñ j Ai j δ(γi − γ j − x). (3.19)

Recalling the definition ofPn(x, γi), equation (3.7), we can write the rates (3.18)
and (3.19) as

dN+ph

dt dx
=

∑

Ei

[1 + ñph(x)] ñe(γi) Pn(x, γi), (3.20)

and

dN−ph

dt dx
=

∑

Ei

ñph(x) ñe(γ
−
i ) Pn(x, γi). (3.21)

Thus the total change of the number of photons in interval (x, x + dx) is

dNph

dt dx
=

2

λ3
C

4π∆V
∫ ∞

1
dγ γp Pn(x, γ)

{

ñe(γ) [1 + ñph(x)] − ñe(γ
−) ñph(x)

}

, (3.22)
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where we have used the relation (3.8) to pass to the continuous limit and defined
γ− = γ − x. The differential number of photons can be written in terms of the
occupation number as

dNph =
2

λ3
C

4π x2dx∆V ñph(x). (3.23)

Using this on the left hand side of equation (3.22) and reintroducingδ(γ − γ1 −
x) dγ1, we obtain the final form of the photon kinetic equation:

d
dt

[

x2 ñph(x)
]

=

∫ ∞

1
dγ

∫ γ

1
dγ1 γp

P(x, γ1)
x

δ(γ − γ1 − x)

×
{

ñe(γ) [1 + ñph(x)] − ñe(γ1) ñph(x)
}

. (3.24)

3.3 Fokker-Planck equation for electrons

In its present form the electron kinetic equation (3.17) is not very useful for astro-
physical calculations. The reason for this is that the magnetic field strengths are
typically much below the critical field strengthBcr = m2

ec3/(e~) = 4.41× 1013 G
(although there are exceptions like e.g. magnetars). Therefore the typical energy
of a synchrotron photon is much lower than the energy of the electron that emits or
absorbs it. Thus at each event the electron gains or loses a tiny fraction of its ini-
tial energy, making it natural to regard the exchange as a continuous process rather
than discrete. In such case the evolution of the energy distribution is described by
a Fokker-Planck differential equation. To deduce its form in this particular case
let’s look at equation (3.16) and rearrange it in the form

d
dt

[γi pi ñ(γi)] =
∫ ∞

0
dx γ+i p+i Pn(x, γ

+
i ) ñph(x) [ñe(γ

+
i ) − ñe(γi)]

−
∫ ∞

0
dx γi pi Pn(x, γi) ñph(x) [ñe(γi) − ñe(γ

−
i )]

+

∫ ∞

0
dx

[

γ+i p+i Pn(x, γ
+
i ) ñe(γ

+
i ) − γi pi Pn(x, γi) ñe(γi)

]

. (3.25)

The next step is to expand quantities like ˜ne(γ+i ), ñe(γ−i ), γ+i p+i Pn(x, γ+i ) and
γ+i p+i Pn(x, γ+i ) ñ(γ+i ) to the second order in ‘parameter’x = γ+i − γi = γi − γ−i .
Inserting the expansions into equation (3.25) and collecting terms, we get

d
dt

[γp ñe(γ)] =
∫ ∞

0
dx x

∂

∂γ

[

γp Pn(x, γ) ñe(γ)
]

+

∫ ∞

0
dx x2 ñph(x)

∂

∂γ

[

γp Pn(x, γ)
∂ñe(γ)
∂γ

]

+
1
2

∫ ∞

0
dx x2 ∂2

∂γ2

[

γp Pn(x, γ) ñe(γ)
]

, (3.26)
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where we have kept only terms up to second order inx. Introducing the functions

H(γ) =
∫ ∞

0
Pn(x, γ) ñph(x) x2 dx, H0(γ) =

∫ ∞

0
Pn(x, γ) x2 dx, (3.27)

as well as the electron cooling rate

γ̇s = −
4
3
σTUBγ

2

mec
= −

∫ ∞

0
P(x, γ) dx = −

∫ ∞

0
Pn(x, γ) x dx, (3.28)

we arrive at the Fokker-Planck type diffusion equation for electrons (McCray
1969; Ghisellini et al. 1988):

d
dt

[γp ñe(γ)] = − ∂
∂γ

[

γ̇s γp ñe(γ) − H(γ) γp
∂ñe(γ)
∂γ

]

+
1
2
∂2

∂γ2

[

H0(γ) γp ñe(γ)
]

. (3.29)

The term containing ˙γs on the right-hand side of equation (3.29) is responsible for
electron cooling due to synchrotron emission, the term containingH accounts for
heating as well as diffusion in energy space due to self-absorption. The latter term
also enables us to treat electron thermalization in strongly self-absorbed regimes.

Note that the last term in equation (3.29) is missing in similar equations de-
rived previously (McCray 1969; Ghisellini et al. 1988). It corresponds to the
diffusion due to spontaneous emission, but does not contribute to the electron
cooling/heating. However, in most cases we expect its contribution to be negligi-
ble compared to the other terms. It is of the orderx/γ smaller than the cooling
term with|γ̇s| and, when electrons are mildly-relativistic, self-absorption becomes
important,ñph≫ 1 and the term containingH dominates. Therefore the term with
H0 can be neglected in most applications.

In the context of thermalization it is worth mentioning thata Maxwellian elec-
tron distribution ˜ne,M together with a Rayleigh-Jeans radiation field is a steady-
state solution of equation (3.29) (neglecting the last term). To see this we simply
observe that ˜nph,RJ(x) = Θ/x, whereΘ = kT/mec2, as well as∂ñe,M/∂γ = −ñe,M/Θ.
Thus H(γ) = −Θγ̇s and the expression in the first square brackets in equation
(3.29) vanishes.

3.4 Cyclo-synchrotron emissivities

As we have seen, in order to calculate all the necessary ratesin the electron and
photon equations, it is sufficient to determine a single quantity: the emissivity
P(x, γ). The cyclo-synchrotron emissivity (here in units s−1 str−1) at photon energy
x in the direction given by angleθ to the magnetic field for an electron moving at
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a pitch-angleα with velocityβ = p/γ is (Pacholczyk 1970)

η(x, θ, α) =
c
λC
αf x2

∞
∑

l=1

[

(cosθ − β cosα
sinθ

)2

J2
l (z) + β2 sin2α J′l

2(z)

]

× δ
(

l
b
γ
− x[1 − β cosα cosθ]

)

, (3.30)

whereαf = e2/c~ is the fine-structure constant,b = B/Bcr is magnetic field in
units of the critical field,Jl andJ′l are the Bessel function and its derivative, and
their argumentz = xp sinα sinθ /b. Averaging over pitch-angle and integrating
overθ, we get the angle-averaged cyclo-synchrotron spectrum

P(x, γ) =
1
2

∫ 1

−1
d cosα 2π

∫ 1

−1
d cosθ η(x, θ, α). (3.31)

Direct summation over harmonics works fine for mildly relativistic electrons
γ < 3. In this case, we first use theδ-function to integrate over the energy bin, and
then integrate numerically over the angles (see e.g. Marcowith & Malzac 2003)
and sum over harmonics contributing to a given bin. The same procedure is used
for any largerγ at photon energiesx corresponding to the first 30 harmonics (i.e.
x < 30 b/γ). At higher x, we use two different methods. In the ultra-relativistic
regimeγ > 10 we use the angle-averaged relativistic synchrotron spectrum (Cru-
sius & Schlickeiser 1986; Ghisellini et al. 1988):

P(x, γ) =
3
√

3
π

σTUB

mec
1
b

x2

{

K4/3(x)K1/3(x) − 3
5

x
[

K2
4/3(x) − K2

1/3(x)
]

}

, (3.32)

wherex = x/(3γ2b) and Ky is the modified Bessel function. For 3< γ < 10,
we substitute the sum over harmonics in equation (3.30) by the integral overl
and use theδ-function to take it. The angular integrals are then taken numerically.
Alternatively we can use the approximate formulae proposedby Katarzyński et al.
(2006), which ignore harmonics. These give identical results for the simulations
presented in this thesis, because low harmonics are self-absorbed.

For numerical calculations we renormalize all the emissivitiesP(x, γ) to guar-
antee the correct cooling rate given by equation (3.28). As an example, in Figure
3.1 we plot the cyclo-synchrotron emissivities from a single electron for different
relativistic momentap.
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Figure 3.1: Single-electron synchrotron emissivities fordifferent momentap.
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Chapter 4

Coulomb collisions

4.1 Introduction

Although the process of Coulomb scattering between electrons/positrons does not
involve radiation, it can have a significant impact on the spectra that emerge from
hot plasmas through its influence on the particle distributions. If one considers
particles of a single species (e.g. electrons), the main effect of Coulomb colli-
sions is relaxation of the distribution into a Maxwellian (i.e. thermal distribu-
tion). In high-energy astrophysics one frequently encounters processes that are
capable of accelerating particles into relativistic non-thermal distributions, which
subsequently cool by inverse-Compton scattering and/or synchrotron radiation.
Typically, at transrelativistic energies thermalizationprocesses such as Coulomb
scattering and synchrotron self-absorption begin to compete with these cooling
mechanisms, which can lead to a so-called “hybrid” distribution of particles:
lower-energy Maxwellian with a high-energy non-thermal tail. As a well-known
example, such hybrid distributions are expected to be responsible for the hard-
state spectra of accreting black-hole binaries which exhibit a cut-off near 100 keV,
followed by a MeV tail.

To properly account for the effects of Coulomb scattering on the particle dis-
tributions, we need an appropriate kinetic equation, whichcan be written down in
a similar relativistic invariant form as was done for Compton scattering and pair-
production. However, its direct application is prevented by the well-known diver-
gence property of the Coulomb cross-section. A different approach is therefore
needed. The birth of the kinetic theory of fully ionized gases can be associated
with the paper by Landau (1937). In this work the kinetic equation for particle-
particle interactions was written in terms of what is now known as the Landau
collision integral. This approach treats energy exchange between particles as a
continuous rather that discrete process and characterizesthe evolution of the dis-
tribution in terms of a flux in momentum space. The treatment in Landau (1937)
was non-relativistic, a generalization of the collision integral to arbitrary particle
energies was done in Belyaev & Budker (1956).

73
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The Landau collision integral formalism can treat distributions with arbitrary
shape in momentum and physical space. If the problem is isotropic, however, the
kinetic equation simplifies to a standard 1-dimensional Fokker-Planck equation in
energy space. Determining the collision integral in this case reduces to calculating
the average rate of change ofγ (energy gain/loss) andγ2 (diffusion) of a test
particle interacting with the distribution, whereγ is the particle’s Lorentz factor.
In the non-relativistic case, the energy exchange rate of a particle in a fully ionized
plasma was calculated in the original paper by Landau (1937), its generalization
to relativistic energies was done in Frankel et al. (1979). The diffusion coefficient
in general case was found in Nayakshin & Melia (1998).

We will start with the relativistic kinetic equation and derive the Landau colli-
sion integral by assuming that the energy/momentum transfer is small in a single
scattering event. Thereafter we will proceed to the isotropic case, which enables
us to perform the angular integrals in the collision integral and obtain a second
order differential equation for evolution of the distribution in energy space.

4.2 Relativistic kinetic equation

Let’s consider a distribution of electrons and positrons with phase space densities
ñ−(p) andñ+(p), wherep is the dimensionless momentum. The relativistic kinetic
equation describing the evolution of either species interacting with both electrons
and positrons via Coulomb collisions is

p · ∇ñ±(p) = r2
e

2

λ3
C

∫

d3p1

γ1

d3p′1
γ′1

d3p′

γ′
δ(p

1
+ p − p′

1
− p′) FCoul

× [

ñe(p′1)ñ±(p′) − ñe(p1)ñ±(p)
]

, (4.1)

whereñe = ñ− + ñ+ and the four-momenta are defined in the usual way asp =
{γ, p} = {γ, pΩ} = γ{1, βΩ}. The invariant reaction rate for Møller scattering (i.e.
e−e− ande+e+) is (Berestetskii et al. 1982)

FCoul =

(

ξ1

ξ − 1
+

ξ

ξ1 − 1
+ 1

)2

+
1− 4ξξ1

(ξ − 1)(ξ1 − 1)
+ 4, (4.2)

where the scalar products of particles’ four-momenta are defined as

ξ = p · p′ = p
1
· p′

1
, ξ1 = p

1
· p′ = p · p′

1
. (4.3)

The corresponding rates for Bhabhae±e∓ scattering are nearly the same in the
small-angle scattering approximation (see e.g. Baring 1987; Coppi & Blandford
1990), therefore we make no distinction between electrons and positrons in this
chapter.
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What immediately stands out in the reaction rate (4.2) is thedivergence when
ξ or ξ1 approaches unity, which corresponds to the case where the particles’ mo-
menta change very little upon scattering. This is a manifestation of the well-
known divergence of the Coulomb scattering cross-section for small-angle scat-
terings. SinceFCoul is not integrable, we cannot use the kinetic equation (4.1) as it
stands. Instead, we can make use of the fact that very little energy gets exchanged
upon each small-angle scattering which nevertheless dominate the total exchange
rate over large-angle scatterings. Therefore the change ofa particle’s energy can
be treated as a continuous process in which case the evolution of the distribu-
tion is described by a Fokker-Planck equation. Thus the simplest approach to
the problem would be to take the Fokker-Planck equation as given and determine
the coefficients in the equation from comparison with the moments of the kinetic
equation (4.1). This has been done in several works (e.g. Dermer & Liang 1989;
Nayakshin & Melia 1998). Another more elaborate approach involves exploiting
the symmetry properties of the reaction rate as well as the fact that the momentum
transfer is small toderive a differential (Fokker-Planck) equation directly from
the kinetic equation. In this case the energy exchange as well as momentum space
diffusion are described by the so-called Landau collision integral.

4.3 Landau collision integral

Let us start by writing the kinetic equation (4.1) in the form
(

∂

∂t
+ cβΩ · ∇

)

ñ±(p) =
2

λ3
C

∫

d3p1

∫

d3q w(p, p1 → p+ q, p1 − q)

× [

ñe(p′1)ñ±(p′) − ñe(p1)ñ±(p)
]

, (4.4)

whereq = p′ − p = p1 − p′1 is the transferred momentum. The scattering rate is
defined as

w(p, p1→ p+ q, p1 − q) = c r2
e

1
γγ1γ′

∫

d3p′1
γ′1

δ(p
1
+ p − p′

1
− p′) FCoul

=
c r2

e

γγ1γ′γ
′
1

δ(γ + γ1 − γ′ − γ′1) FCoul =
c r2

e

γγ1γ′
δ(ξ + ξ1 − qe − 1) FCoul, (4.5)

where we have defined

qe = p · p
1
= p′ · p′

1
(4.6)

and used the identity

δ(γ + γ1 − γ′ − γ′1) = γ′1 δ(ξ + ξ1 − qe − 1) (4.7)

After performing the three-dimensional integral in equation (4.5), we have to
substituteγ′1 =

√

p′1
2 + 1, wherep′1 = p1 + p − p′ = p1 − q. Also, we have

γ′ =
√

p′2 + 1, wherep′ = p+ q.
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The scattering ratew has the following symmetries

w(p, p1→ p+ q, p1 − q) = w(p+ q, p1 − q→ p, p1)

= w(p1, p→ p+ q, p1 − q) = w(p, p1→ p1 − q, p+ q). (4.8)

The last two equalities in equation (4.8) are applicable only if the interacting par-
ticles are identical. The first equality represents microscopic reversibility, i.e. the
symmetry upon the interchange of initial and final particle states. This allows us
to write w as

w
(

p+
q
2
, p1 −

q
2
, q

)

, (4.9)

in which case the symmetry property reads

w
(

p+
q
2
, p1 −

q
2
, q

)

= w
(

p+
q
2
, p1 −

q
2
,−q

)

. (4.10)

To derive the Fokker-Planck equation from the kinetic equation (4.4), we will
regard the transferred momentum as a small parameter and will expandw, ñe and
ñ± in Taylor series inq aroundp andp1. We have

[

ñe(p′1)ñ±(p′) − ñe(p1)ñ±(p)
] ≈ qi

[

ñe(p1)
∂ñ±(p)
∂pi

− ñ±(p)
∂ñe(p1)

∂pi
1

]

+
1
2

qiq j















ñe(p1)
∂2ñ±(p)
∂pi∂p j

+ ñ±(p)
∂2ñe(p1)

∂pi
1∂p j

1

− 2
∂ñ±(p)
∂pi

∂ñe(p1)

∂p j
1















(4.11)

and

w
(

p+
q
2
, p1 −

q
2
, q

)

≈ w(p, p1, q) +
1
2

qi

[

∂w(p, p1, q)
∂pi

− ∂w(p, p1, q)

∂pi
1

]

. (4.12)

Inserting the expansions (4.11) and (4.12) into equation (4.4), we see that the first
order term vanishes upon integration overd3q sinceqiw(p, p1, q) is antisymmetric
in q. The second order terms give

(

∂

∂t
+ cβΩ · ∇

)

ñ±(p) =
2

λ3
C

∫

d3p1

∫

d3q
1
2

qiq j

×














w(p, p1, q)















ñe(p1)
∂2ñ±(p)
∂pi∂p j

+ ñ±(p)
∂2ñe(p1)

∂pi
1∂p j

1

− 2
∂ñ±(p)
∂pi

∂ñe(p1)

∂p j
1















+

[

∂w(p, p1, q)
∂pi

− ∂w(p, p1, q)

∂pi
1

]















ñe(p1)
∂ñ±(p)
∂p j

− ñ±(p)
∂ñe(p1)

∂p j
1





























=
2

λ3
C

∫

d3p1

∫

d3q
1
2

qiq j

×
(

∂

∂pi
− ∂

∂pi
1

)















w(p, p1, q)















ñe(p1)
∂ñ±(p)
∂p j

− ñ±(p)
∂ñe(p1)

∂p j
1





























. (4.13)
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Note that the integral overd3p1 of the derivative∂/∂pi
1 vanishes and we have

finally
(

∂

∂t
+ cβΩ · ∇

)

ñ±(p) = − ∂si

∂pi
, (4.14)

where we have defined the so-called Landau collision integral (Landau 1937; see
also Lifshitz & Pitaevskii 1981)

si =
2

λ3
C

∫















ñ±(p)
∂ñe(p1)

∂p j
1

− ñe(p1)
∂ñ±(p)
∂p j















Bi j(p, p1) d3p1, (4.15)

where

Bi j(p, p1) =
1
2

∫

qiq j w(p, p1, q) d3q (4.16)

is a spatial tensor that is symmetric ini ↔ j as well asp ↔ p1. The collision
integralsi can be regarded as the particle flux in momentum space, givingequa-
tion (4.14) the meaning of a continuity equation in 6-dimensional phase space.
Together with equations (4.15) and (4.16) the second order differential equation
(4.14) describes the evolution of the particle distribution in phase space due to
interactions with an arbitrary target distribution. In this form it is quite general
and is not limited to Coulomb collisions, the only requirement for its validity is
that the energy/momentum exchange can be regarded as a continuous process. All
the physics in contained in the quantityBi j, which we will evaluate separately for
non-relativistic and relativistic (general) cases.

4.3.1 Non-relativistic treatment

Rewriting the scattering rate as

w d3q = |v − v1| dσ, (4.17)

wherev andv1 are the velocities of the interacting particles, equation (4.16) be-
comes

Bi j =
1
2

∫

qiq j |v − v1| dσ. (4.18)

Assuming the scattering angle is small, the transferred momentumq is approx-
imately perpendicular to the relative velocity of the particles before collision,
therefore1

Bi j(v j − v j
1) = 0. (4.19)

1Since in this subsection we are working in Cartesian three-space, we make no distinction
between covariant and contravariant vector components. The summation convention therefore
applies for repeated upper or lower indices.
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A tensor satisfying this condition has to be of the form

Bi j =
1
2

B















δi j −
(vi − vi

1)(v
j − v j

1)

(v − v1)2















, (4.20)

whereB is the trace

B = Bi j =
1
2

∫

q2|v − v1| dσ. (4.21)

For small scattering angles one can writemcq ≈ µ |v − v1| θ, whereθ is the
scattering angle in the centre-of-momentum frame andµ is the reduced mass.
ThereforeB becomes

B =
µ2

(mc)2
|v − v1|3σt, where σt =

1
2

∫

θ2 dσ. (4.22)

The differential cross-section is approximated by the Rutherford formula

dσ ≈ 4e4dΩ
µ2(v − v1)4 θ4

=
8πe4dθ

µ2(v − v1)4 θ3
, (4.23)

whereby the quantityσt becomes

σt =
4πe4

µ2(v − v1)4
lnΛ, where lnΛ =

∫

dθ
θ

(4.24)

is the Coulomb logarithm. For the tensorBi j we get

Bi j =
2πe4

(mc)2

1
|v − v1|

lnΛ















δi j −
(vi − vi

1)(v
j − v j

1)

(v − v1)2















. (4.25)

4.3.2 Relativistic treatment

Although not manifestly covariant, the analysis of the preceding section up to
equation (4.16) is not limited by the particles’ energies and is therefore valid
also in relativistic case, provided that the correct relativistic ratew is used. It
is possible, in principle, to calculate the components of the tensorBi j entering the
collision integral directly from equations (4.16) and (4.5). However, it is much
simpler to employ the properties ofBi j to make an educated guess what form it
should take. Let’s start by noting thatγγ1 w d3q is a Lorentz-invariant quantity.
Indeed, from equation (4.5) we have2

γγ1 w(p, p1, q) d3q = c r2
e

d3p′

γ′

∫

d3p′1
γ′1

δ(p
1
+ p − p′

1
− p′) FCoul, (4.26)

2Here we are approximatingw(p, p1, q) ≈ w(p+ q/2, p1 − q/2, q), which we can do if we are
interested in only second order terms inBi j.
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whered3p′/γ′ = d3q/γ′, d3p′1/γ
′
1, FCoul as well as the four-dimensional delta-

function are all Lorentz-invariant. We can now define a Lorentz tensor

Wαβ =
1
2
γγ1

∫

qαqβ w(p, p1, q) d3q, (4.27)

whereqα andqβ are the components of thefour-momentum transferred in a scat-
tering event. Obviously, the components of the 3-tensorBi j are related to the
spatial components ofWαβ as

Bi j =
W i j

γγ1
. (4.28)

Let’s proceed by calculating the quantityWα
α. Using equations (4.27) and

(4.5), we get

Wα
α ≡ W =

1
2

c r2
e

∫

d3p′

γ′
qαqα δ(ξ + ξ1 − qe − 1) FCoul. (4.29)

Note that as an invariant scalar it can be evaluated in any frame, which we choose
to be the centre-of-momentum frame. Using the identities

γcm = γ1,cm, pcm+ p1,cm = 0, qe = γγ1 − p · p1 = 2γ2
cm− 1, (4.30)

we find

δ(ξ + ξ1 − qe − 1) = δ(p′ · (p + p
1
) − p · p

1
− 1) =

δ(γ′cm− γcm)

2γcm
. (4.31)

Putting this in equation (4.29) and noting thatd3p′/γ′ = p′cm dγ′cm dΩ′cm, we get
after taking thedγ′cm integral

W =
1
4

c r2
e

pcm

γcm

∫

qαqα FCoul dΩ
′
cm. (4.32)

With γ′cm = γcm, the scalar productsξ andξ1 enteringFCoul become

ξ = γ2
cm(1− p2

cm cosθcm), ξ1 = γ
2
cm(1+ p2

cm cosθcm), (4.33)

whereθcm is the scattering angle in the CM-frame. We also find

qαqα = (p′ α − pα)(p′α − pα) = 2 (1− ξ)

= −2p2
cm(1− cosθcm) = −

2p2
cm sin2 θcm

(1+ cosθcm)
. (4.34)

In terms of CM-frame quantities the invariant reaction rateFCoul given by equation
(4.2) takes the form (Møller 1932; Jauch & Rohrlich 1976)

FCoul =
4 (γ2

cm+ p2
cm)2

p4
cm sin4 θcm

+
1− 4γ2

cm(γ2
cm+ p2

cm)

p4
cm sin2 θcm

+ 1. (4.35)
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In the small-angle scattering approximation, it is the leading term on the right-
hand side of equation (4.35) that makes the dominant contribution to the scattering
rate. It is therefore common practice to neglect the other terms altogether. The
error that one makes by doing this is small compared to uncertainties arising from
evaluating the Coulomb logarithm.

Inserting equations (4.34) and (4.35) into (4.32) and writingdΩ′cm = d cosθcm dφcm,
we get

W = −2π c r2
e lnΛ

(γ2
cm+ p2

cm)2

γcmpcm
, (4.36)

where

lnΛ =
∫

2
1+ cosθcm

d cosθcm

sin2 θcm

≈
∫

dθcm

θcm
. (4.37)

This can be written in terms of the Lorentz-invariant quantity qe as

W = −4πc r2
e lnΛ

q2
e

(q2
e − 1)1/2

(4.38)

if we observe that

γ2
cm+ p2

cm = p · p
1
= qe and γcmpcm =

1
2

[

(p · p
1
)2 − 1

]1/2
= (q2

e − 1)1/2.

(4.39)

Owing to the fact thatq0
cm = 0, the time components of tensorWαβ vanish in

the CM-frame:

Wα0
cm = W0α

cm = 0. (4.40)

Using this and also the fact thatpcm is nearly perpendicular toqcm for small-angle
scattering, we find that

Wαβpβ = Wαβp1, β = 0, (4.41)

since these scalar products vanish in the CM frame and if a Lorentz 4-vector is
zero in one frame it is zero in all frames.

Let us now try to determine the form of the tensorWαβ. In addition to be-
ing symmetric in the two indices,Wαβ also has to be symmetric with respect to
switching the particles’ momenta. The most general form of such tensor, depend-
ing only on 4-vectorsp andp

1
, is (Belyaev & Budker 1956; Lifshitz & Pitaevskii

1981)

Wαβ = A ηαβ + B (pαpβ + pα1 pβ1) + C (pαpβ1 + pα1 pβ), (4.42)
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whereηαβ is the Minkowski tensor. The scalar coefficientsA, B andC can be
determined from conditions (4.38) and (4.41), giving

A =
W
2
, B =

W
2(q2

e − 1)
, C = − qeW

2(q2
e − 1)

, (4.43)

whereby equation (4.42) becomes

Wαβ = 2πc r2
e lnΛ

q2
e

(q2
e − 1)3/2

×
{

−(q2
e − 1)ηαβ − (pαpβ + pα1 pβ1) + qe (pαpβ1 + pα1 pβ)

}

. (4.44)

The 3-tensorBi j is now simply

Bi j = 2πc r2
e lnΛ

1
γγ1

q2
e

(q2
e − 1)3/2

×
{

(q2
e − 1)δi j − (pi p j + pi

1p j
1) + qe (pi p j

1 + pi
1p j)

}

. (4.45)

It can be shown thatBi j defined by the preceding equation satisfies the condition

Bi j v j = Bi j v j
1, (4.46)

wherev j = cp j/γ andv j
1 = cp j

1/γ1 are three-velocities. Equation (4.46) is identical
to condition (4.19) obtained in the non-relativistic case.Also, it is easy to verify
thatBi j given by equation (4.45) reduces to equation (4.25) in the non-relativistic
limit.

4.3.3 Collision integral in the isotropic case

The evolution of the electron distribution due to Coulomb scattering in general
case is determined by equations (4.14), (4.15) and (4.45). However, let’s now
assume that the distributions of the interacting particlesare isotropic. In this case
the kinetic equation (4.14) reduces to a scalar second-order differential equation.

Consider the collision integral given by equation (4.15). For isotropic particle
distribution functions the gradients of the occupation numbers become3

∂ñ±(p)
∂p j

= p̂ j ∂ñ±(p)
∂p

and
∂ñe(p1)

∂p j
1

= p̂ j
1

∂ñe(p1)
∂p1

, (4.47)

where p̂ j and p̂ j
1 are unit vectors pointing in the directions ofp j and p j

1, respec-
tively. Thus using the identitiesd3p1 = p2

1dp1 dΩ1 andpdp = γdγ we can write

3As before, we do not distinguish between covariant and contravariant indices in Cartesian
three-space.
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the momentum space flux (4.15) as

si =
2

λ3
C

[

ñ±(p)
∫

∂ñe(p1)
∂γ1

p2
1dp1

∫

p1

γ1
p̂ j

1Bi j dΩ1

− ∂ñ±(p)
∂γ

∫

ñe(p1) p2
1dp1

∫

p
γ

p̂ jBi j dΩ1

]

. (4.48)

By virtue of relation (4.46) the last integrals in both termsin (4.48) are equal, i.e.

Ki ≡
∫

p1

γ1
p̂ j

1Bi j dΩ1 =

∫

p
γ

p̂ jBi j dΩ1, (4.49)

so we only need to calculate one of them.
As a sidenote, observe that for Maxwellian energy distributions∂ñe,M/∂γ =

−ñe,M/Θ, whereΘ = kT/mc2, and thereforesi = 0 as one would expect in equi-
librium.

In order to determineKi we first need to evaluate ˆp jBi j. To simplify the nota-
tion equation (4.45) forBi j, we identify

γrel = γγ1 − p · p1 = qe, prel =

√

q2
e − 1 (4.50)

as the Lorentz factor and momentum of one particle in the restframe of the other.
The scalar product ˆpβBαβ now becomes

p̂ jBi j = 2πc r2
e lnΛ

1
γγ1

γ2
rel

p3
rel

×
{

p2
rel p̂i − p2 p̂i − p1

p
(p · p1) p̂i

1 + γrel

[

(p · p1) p̂i + pp1 p̂i
1

]

}

. (4.51)

The relation (4.51) describes a three-vector, which we can rotate into the frame
where it is most convenient to take the angular integral (dΩ1 is rotational invari-
ant). After taking the integral we can perform a rotation back to the lab frame.
Let’s choose this frame in such way that the three-axis points to the direction of
(fixed) p̂i. In this frame we have

p = {0, 0, p}, p1 = p1 {sinθ cosφ, sinθ sinφ, cosθ}, (4.52)

whereθ is the angle betweenp and p1, andφ is the azimuthal angle defined on
a plane perpendicular top and measured from an arbitrary reference direction
(say, from the projection of the lab-frame 3-axis onto this plane). The solid angle
element isdΩ1 = d cosθ dφ.

We now notice that upon taking the integral in this frame the first two compo-
nents (i = 1, 2) of Ki vanish. Indeed, inserting equation (4.51) into (4.49) we see
that in the terms proportional to ˆpi

1 we encounter integrals like
∫ 2π

0
sinφ dφ = 0
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and
∫ 2π

0
cosφ dφ = 0 in the first two components. Of course, in terms proportional

to p̂i these components are equal to zero by definition. We are therefore concerned
only with the third component of the vector ˆp jBi j, which becomes

p̂ jB3 j = 2πc r2
e lnΛ

1
γγ1

γ2
rel

p3
rel

(

p2
rel − p2 − p2

1µ
2 + 2γrel pp1µ

)

, (4.53)

whereµ = cosθ. For taking the integral it is more convenient to write equation
(4.53) in terms of the relative Lorentz factorγrel instead ofµ. To do this we write
equation (4.50) asγrel = γγ1 − pp1µ. Expressingµ and substituting into equation
(4.53) gives

p̂ jB3 j = 2πc r2
e lnΛ

1
γγ1

γ2
rel

p3
rel

[

p2
rel − p2 − (γγ1 − γrel)2

p2
+ 2γrel (γγ1 − γrel)

]

,

(4.54)

which, after some manipulation, can be written as

p̂ jB3 j = 2πc r2
e lnΛ

1
γγ1

γ2

p2

γ2
rel

p3
rel

(

γ+rel − γrel
) (

γrel − γ−rel

)

, (4.55)

where we have defined

γ+rel = γγ1 + pp1 and γ−rel = γγ1 − pp1. (4.56)

The differential solid angle in the expression (4.49) forKi can be written as

dΩ1 = −
dγrel dφ

pp1
, (4.57)

where we have used the relationdγrel = −pp1 dµ. The three-component ofKi now
becomes

K3(γ, γ1) = 2π
p
γ

∫ γ+rel

γ−rel

dγrel

pp1
p̂ jB3 j ≡ K(γ, γ1), (4.58)

the azimuthal integral contributing 2π since the integrand does not depend onφ.
Inserting expression (4.55) into (4.58) and defining

∆(γ, γ1) =
∫ γ+rel

γ−rel

γ2
rel

p3
rel

(

γ+rel − γrel
) (

γrel − γ−rel

)

dγrel, (4.59)

we will have

K(γ, γ1) = 4π2c r2
e lnΛ

1
γγ1pp1

γ

p
∆(γ, γ1). (4.60)
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The integral in equation (4.59) is elementary and gives

∆(γ, γ1) =

{

−
(

γ2 + γ2
1 +

1
2

)

ln(γrel + prel)

+
1

prel

[

γrel (γ
2 + γ2

1) − 2γγ1

]

+ prel

(

2γγ1 −
γrel

2

)

}
∣

∣

∣

∣

∣

∣

γ+rel

γ−rel

. (4.61)

The next step in our derivation is to note that the vectorKi points in the same
direction aspi, since for both of these only the third component has a nonzero
value in the frame we are working in. Therefore, rotation into an arbitrary frame
gives

Ki = p̂i K(γ, γ′). (4.62)

The momentum space flux (4.48) is proportional toKi and can be written in a
similar manner

si = p̂i s(p), (4.63)

where

s(p) =
2

λ3
C

[

ñ±(p)
∫

∂ñe(p1)
∂γ1

K(γ, γ1) p2
1dp1 −

∂ñ±(p)
∂γ

∫

ñe(p1) K(γ, γ1) p2
1dp1

]

.

(4.64)

For later use let’s rewrite the last equation as

s(p) =
2

λ3
C

{

ñ±(p)
∫

ñe(p1)
∂

∂γ1

[

γ1p1 K(γ, γ1)
]

dγ1

− ∂ñ±(p)
∂γ

∫

ñe(p1) γ1p1 K(γ, γ1) dγ1

}

. (4.65)

The divergence of the momentum space flux on the right-hand side of the
evolution equation (4.14) takes the form

∂si

∂pi
=

∂

∂pi

[

pi

p
s(p)

]

= 3
s(p)

p
+ p

∂

∂p

[

s(p)
p

]

=
1
p2

∂

∂p

[

p2 s(p)
]

. (4.66)

The isotropic evolution equation is

∂ñ±(p)
∂t

= − 1
p2

∂

∂p

[

p2 s(p)
]

, (4.67)

where spatial homogeneity has been assumed.
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Let’s now try to write equation (4.67) in the standard form ofthe diffusion
equation in energy space, namely

∂N±(γ)
∂t

= − ∂
∂γ

{

γ̇N±(γ) − 1
2
∂

∂γ

[

D(γ) N±(γ)
]

}

, (4.68)

whereγ̇ andD(γ) are the energy exchange and diffusion coefficients, respectively.
For isotropic distributions the particle densityN(γ) is related to the occupation
number as

N(γ) =
2

λ3
C

4πγp ñ(p). (4.69)

Using the expression (4.65), the quantity in square brackets on the right-hand side
of equation (4.67) can be written in the following form

p2 s(p) =
1

(4π)2

(

2

λ3
C

)−1 N±(γ)
γp

∫

Ne(γ1) dγ1

γ1p1

×



















∂
[

p2p1γ1K(γ, γ1)
]

∂γ
−
∂
[

p2p1γ1K(γ, γ1)
]

∂γ1



















− 1
(4π)2

(

2

λ3
C

)−1
∂

∂γ

{

N±(γ)
γp

∫

Ne(γ1) dγ1

γ1p1
p2p1γ1K(γ, γ1)

}

. (4.70)

SubstitutingK(γ, γ1) from equation (4.60), this becomes

p2 s(p) =
1
4

c r2
e

(

2

λ3
C

)−1

lnΛ

{

N±(γ)
γp

∫

Ne(γ1) dγ1

γ1p1

[

∂∆(γ, γ1)
∂γ

− ∂∆(γ, γ1)
∂γ1

]

− ∂
∂γ

[

N±(γ)
γp

∫

Ne(γ1) dγ1

γ1p1
∆(γ, γ1)

]}

. (4.71)

Putting this into equation (4.67) and substituting ˜n±(p) from equation (4.69), we
find

∂N±(γ)
∂t

= − ∂
∂γ

{

N±(γ)
∫

a(γ, γ1) Ne(γ1) dγ1

− 1
2
∂

∂γ

[

N±(γ)
∫

d(γ, γ1) Ne(γ1) dγ1

]}

, (4.72)

where we have defined

d(γ, γ1) =
3
4

cσT lnΛ
γγ1pp1

∆(γ, γ1) (4.73)

and

a(γ, γ1) =
3
8

cσT lnΛ
γγ1pp1

[

∂∆(γ, γ1)
∂γ

− ∂∆(γ, γ1)
∂γ1

]

. (4.74)
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Equation (4.72) has the same form as (4.68) if we identify

γ̇ =

∫

a(γ, γ1) Ne(γ1) dγ1 and D(γ) =
∫

d(γ, γ1) Ne(γ1) dγ1. (4.75)

Together with equation (4.61), we have an explicit expression for the diffusion
coefficientd(γ, γ1). To find an explicit expression for the energy exchange coef-
ficient a(γ, γ1), let’s calculate the expression in the square brackets in equation
(4.74), using the definition (4.59). Since the integrand in equation (4.59) is zero
in both the upper and lower integration limits, the derivative overγ can be written
as

∂∆(γ, γ1)
∂γ

=

∫ γ+rel

γ−rel

γ2
rel

p3
rel

∂

∂γ

[(

γ+rel − γrel
) (

γrel − γ−rel

)]

dγrel. (4.76)

The derivative under the integral is

∂

∂γ

[(

γ+rel − γrel
) (

γrel − γ−rel

)]

=
∂γ+rel

∂γ

(

γrel − γ−rel

) −
∂γ−rel

∂γ

(

γ+rel − γrel
)

= 2(γ1γrel − γ). (4.77)

Because∆(γ, γ1) is symmetric, its derivative with respect toγ1 is given by ex-
pressions (4.76) and (4.77) with the argumentsγ andγ1 reversed. The coefficient
a(γ, γ1) now becomes

a(γ, γ1) =
3
4

cσT lnΛ
γγ1pp1

(γ1 − γ) χ(γ, γ1), (4.78)

where

χ(γ, γ1) =
∫ γ+rel

γ−rel

γ2
rel(γrel + 1)

p3
rel

dγrel =

[

prel −
γrel + 1

prel
+ ln(γrel + prel)

]
∣

∣

∣

∣

∣

∣

γ+rel

γ−rel

. (4.79)

The interpretation of ˙γ andD(γ) as energy exchange and diffusion coefficients
can be made clear by directly calculating the average rate ofchange ofγ′ − γ
and (γ′ − γ)2 for a test-particle interacting with a given target distribution. This
was done by Frankel et al. (1979) and Nayakshin & Melia (1998)for the energy
exchange and diffusion coefficients, respectively. The expressions obtained in
these works are identical to the ones derived here. On physical grounds this result
should be expected, however mathematically it seems quite remarkable due to the
different approximations made along the way. On the other hand, all those approx-
imations boil down to the assumption of the dominance of small-angle scatterings
and simply lead to slightly different definitions of the Coulomb logarithm.

Simple approximate expressions for the energy exchange anddiffusion coef-
ficients can be obtained by using the one-point trapezoidal rule to approximate
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Figure 4.1: Energy exchange rate of a test particle interacting with a mono-
energetic background distribution with different Lorentz factorsγ1. Solid lines
correspond to the exact expression (4.78), dashed lines correspond to the approxi-
mation (4.80). Note that forγ1 = 300 the curves corresponding to the approximate
and exact expressions are indistinguishable.

the integral in equation (4.79) and the 3-point Simpson’s rule to approximate the
integral in equation (4.59):

a(γ, γ1) ≈
3
2

cσT lnΛ
(γ1 − γ) γγ1

(γγ1 − 1)
√

(γγ1)2 − 1
(4.80)

and

d(γ, γ1) ≈ cσT lnΛ
γγ1p2p2

1
[

(γγ1)2 − 1
]3/2

, (4.81)

which agree with the exact coefficients reasonably well, except in the regionγ ≈
γ1. In Figures 4.1 and 4.2 we plot the energy exchange and diffusion coefficients
given by equations (4.78) and (4.73) for different target photon energies, together
with the approximate expressions (4.80) and (4.81).
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Figure 4.2: The diffusion coefficient for a particle interacting with a mono-
energetic background distribution with different Lorentz factorsγ1. Solid and
dashed lines correspond to the exact and approximate expressions (4.73) and
(4.81), respectively. Note that both axes are in logarithmic units.
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Chapter 5

Kinetic equations

We are considering a region of relativistic plasma of charged particles (electrons
and positrons, which we call “electrons” below if the relevant processes, e.g.
Compton scattering and synchrotron, operate identically on both types of parti-
cles) permeated by radiation and tangled magnetic fields. Westudy the evolution
of lepton and photon distributions by solving the time-dependent coupled kinetic
equations accounting for synchrotron emission and absorption, Compton scatter-
ing, Coulomb scattering, and electron-positron pair production and annihilation.
To do this we first need to collect the kinetic equations describing different pro-
cesses discussed in the preceding sections and rewrite themin form that is most
suitable for numerical calculations. We make a simplifyingassumption of homo-
geneity and isotropy of the particle distributions. The escape of radiation (and
also electrons) from the region is modeled by a simple escapeprobability formal-
ism. The energization of electrons is modeled either through injection of high-
energy electrons or diffusive acceleration within the active region, which allows
us to accommodate different physical mechanisms through which energy transfer
to electrons can be realized.

5.1 Distribution functions

The dimensionless four-momentum of a photon isx = {x, x} = x{1,ω}, whereω
is the unit vector in the photon propagation direction andx ≡ hν/mec2. The pho-
ton distribution can be described by the occupation number ˜nph or by the photon
number density per linear and logarithmic interval of photon energy:

Nph =

∫

Nph(x) dx =
∫

nph(x) d ln x =
2

λ3
C

∫

d2ω

∫

ñph(x) x2 dx, (5.1)

whereλC = h/mec is the Compton wavelength. FunctionsNph(x) andñph are used
in general forms of kinetic equations andnph(x) is convenient for numerical work.

The dimensionless electron (positron) four-momentum is defined asp = {γ, p}
= {γ, pΩ} = γ{1, βΩ}, whereΩ is the unit vector in the electron propagation di-
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rection,γ, β, andp = βγ =
√

γ2 − 1 are the electron Lorentz factor, dimensionless
velocity and momentum, respectively. We can use subscripts+ and− to distin-
guish between positrons and electrons. The electron/positron distributions can be
defined in a number of alternative ways (normalized to their number density):

N± =
∫

N±(γ)dγ =
∫

n±(p) d ln p =
2

λ3
C

∫

d2Ω

∫

ñ±(p) p2dp. (5.2)

The occupation number ˜n±(p) and the density per unit Lorentz factor are useful
quantities used in general kinetic equations, while the electron density per loga-
rithmic momentum intervaln±(p) is more appropriate for numerical work. For the
processes, where the distinction between electrons and positrons is unnecessary,
we use the sum of the distributions, for example,ne = n− + n+.

5.2 General form of the kinetic equations

The relativistic kinetic equation (RKE) describing the evolution of the occupation
numberñ1(p1) of species 1 (electron or photon) as a result of binary collisions can
be written in the covariant form (de Groot et al. 1980)

p
1
· ∇ñ1(p1) =

∫

d3p2

ǫ2

d3p3

ǫ3

d3p4

ǫ4
δ(p

1
+ p

2
− p

3
− p

4
)W12→34

× [

ñ3(p3)ñ4(p4) − ñ1(p1)ñ2(p2)
]

, (5.3)

where∇ = {∂/c∂t,∇} is the four-gradient,ǫi is the zeroth component of the cor-
responding four-momentum, andW12→34 = W34→12 is a Lorentz scalar transition
rate, which possesses the obvious symmetry. In this equation, the non-linear terms
related to fermion degeneracy and induced photon scattering are omitted. As it
stands, the right-hand side of equation (5.3) accounts for the rate of one particular
process. To determine the full evolution of ˜n1 we should therefore sum up the
collisional integrals accounting for all relevant processes.

In the frame where the particle distributions are isotropic(we call this frame
E), the kinetic equation can be represented in the form (skipping subscript 1):

∂ñ(p)
∂t
+

1
p2

∂

∂p

{

ǫ̇ ǫ p ñ(p) − 1
2
∂

∂ǫ

[

D(ǫ) ǫ p ñ(p)
]

}

=
Dñ(p)

Dt

∣

∣

∣

∣

∣

coll
, (5.4)

where the momentum derivative term accounts for continuousenergy gain/loss
processes, while the right-hand side contains all discontinuous processes such as
scattering, emission, absorption and escape. The quantities ǫ̇ andD(ǫ) account
for systematic particle heating/cooling and diffusion in energy space, respectively.
Both are generally energy-dependent for the processes we are considering here.
For the following discussion it is convenient to decompose the kinetic equations
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in terms of the contributions from different physical processes as

∂nph(x)

∂t
= ṅph,syn(x) + ṅph,cs(x) + ṅph,pp(x) −

nph(x)

tesc
+ Qph, (5.5)

∂n±(p)
∂t

= ṅ±,syn(p) + ṅ±,cs(p) + ṅ±,pp(p) + ṅ±,Coul(p) − n±(p)
t±,esc

+ Q±, (5.6)

where syn, cs, pp and Coul stand for synchrotron, Compton scattering, pair pro-
duction (and annihilation), and Coulomb scattering, respectively. The terms de-
scribing physical processes can contain both differential and integral parts, de-
pending on the nature of the process and the way we find most convenient to treat
it. Thus the equation for photons has the form:

∂nph(x)

∂t
= − ∂

∂ ln x

[

Aph(x)nph(x) − Bph(x)
∂nph(x)

∂ ln x

]

+

∫

Kph(x, x1)nph(x1) d ln x1 −
nph(x)

tph
+ S ph. (5.7)

Here the differential term is responsible for Compton scattering in diffusion ap-
proximation, while the integral term with kernelKph describes scattering that can
be resolved on the grid. The sink term∝ 1/tph describes photon absorption (by
synchrotron and pair-production) and scattering as well asthe escape, whileS ph

gives the contribution from pair annihilation, synchrotron emission and other (e.g.
blackbody) photon injections.

Similarly, for electrons and positrons we write

∂n±(p)
∂t

= − ∂

∂ ln p

[

Ae(p)n±(p) − Be(p)
∂n±(p)
∂ ln p

]

+

∫

Ke(p, p1)n±(p1) d ln p1 −
n±(p)

t±
+ S ±, (5.8)

where coefficientsAe andBe describe electron cooling, heating and diffusion as
a result of synchrotron emission and absorption, Compton scattering in Thomson
limit, Coulomb scattering as well as possible diffusive particle acceleration. The
integral term with kernelKe describes Compton scattering in Klein-Nishina limit
into the bin and the sink term∝ 1/t± gives the scattering from the bin as well
as the electron escape and pair annihilation. The source term S ± contains pair
production as well as a possible electron injection term.

5.3 Escape probability formalism

As we are studying radiative processes in a simple one-zone framework neglecting
the radiative transport effects, we must include an escape term in equation (5.5) to
allow for the fact that photons can leave the emission regionof finite sizeR and
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produce the radiation flux that is actually observed. The typical escape timescale
is usually estimated from random walk arguments resulting in tesc∼ R(1+ τsc)/c,
whereτsc is the scattering opacity. Such form accounts for the fact that if multiple
scatterings are important (τsc > 1), photons have to ’diffuse’ out of the medium
and the escape time is prolonged by a factorτsc. However, it does not account for
the fact that if the medium is absorptive, a typical photon cannot diffuse further
than the thermalization lengthl⋆ = [αa(αa + αsc)]−1/2 before it is destroyed (αa

andαsc are extinction coefficients due to absorption and scattering, respectively).
To incorporate both effects, we employ the solution of a simple radiative diffu-
sion problem in a sphere of radiusR with constant emissivity, absorptivity and
monochromatic scattering. The escape timescale is estimated by comparing the
emergent flux to the radiation density inside the source. While clearly an over-
simplification, such estimation nevertheless has the desired properties mentioned
above.

Defining the effective optical thickness of the medium asτ⋆ =
√

3τa(τa + τsc),
whereτa = αaR and τsc = αscR are optical thicknesses due to absorption and
scattering, respectively, we find

tesc=
2R
3c
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, (5.9)

whereλ = αsc/(αa+ αsc) is the single-scattering albedo. If the medium is translu-
cent (τ⋆ ≪ 1), equation (5.9) reduces to a more familiar form

tesc=
2R
3c

(

1+
3
10
τsc

)

. (5.10)

In our simulations,αa includes cyclo-synchrotron absorption and photon-photon
pair production, andαsc is the extinction coefficient for Compton scattering.

5.4 Compton scattering

5.4.1 Compton scattering of photons

The explicitly covariant form of RKE for Compton scatteringof photons ignoring
non-linear terms is (Pomraning 1973; Nagirner & Poutanen 1994)

x · ∇ñph(x) =
r2

e

2
2

λ3
C

∫

d3p
γ

d3p1

γ1

d3x1

x1
δ(p

1
+ x1 − p − x) F

×
[

ñph(x1)ñe(p1) − ñph(x)ñe(p)
]

, (5.11)

where re is the classical electron radius,F is the Klein-Nishina reaction rate
(Berestetskii et al. 1982)

F =

(

1
ξ
− 1
ξ1

)2

+ 2

(

1
ξ
− 1
ξ1

)

+
ξ

ξ1
+
ξ1

ξ
, (5.12)
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andξ = p
1
· x1 = p · x andξ1 = p

1
· x = p · x1 are the scalar products of four-vectors.

We assume the existence of a reference frame where the particle and photon
distributions are approximately homogeneous and isotropic. Under the spacial
homogeneity assumption we can write equation (5.11) as

Dñph(x)

Dt

∣

∣

∣

∣

∣

coll,cs
= −c σT s0(x) Ne ñph(x) + cσTNe

1
x

∫

d3x1

x1
Rph(x1→ x) ñph(x1).

(5.13)
The scattering cross-section (in units of Thomson cross-sectionσT) is given by

s0(x) =
3

16π
2

λ3
CNe

1
x

∫

d3p
γ

d3p1

γ1

d3x1

x1
ñe(p) F δ(p

1
+ x1 − p − x) (5.14)

and the redistribution function is

Rph(x1→ x) =
3

16π
2

λ3
CNe

∫

d3p
γ

d3p1

γ1
ñe(p1) F δ(p

1
+ x1 − p − x). (5.15)

For isotropic particle distributions in frameE, equation (5.13) can be written
as

Dñph(x)

Dt

∣

∣

∣

∣

∣

coll,cs
= −c σT s0(x) Ne ñph(x) + cσTNe

4π
x

∫

x1dx1 Rph(x, x1) ñph(x1),

(5.16)
where the redistribution function averaged over the cosineof the scattering angle
µ = x · x1/(xx1) = ω ·ω1 is expressed via an integral over the electron distribution
(Nagirner & Poutanen 1994):

Rph(x, x1) =
1
2

∫ 1

−1
Rph(x1→ x) dµ =

3
16

2

λ3
CNe

∫ ∞

γ⋆(x,x1)
Rph(x, x1, γ1) ñe(p1) dγ1.

(5.17)
Here

Rph(x, x1, γ1) =
1

4π2
p1

∫

d3p
γ

d2Ω1 d2ω1 F δ(p
1
+ x1 − p − x), (5.18)

and the lower limit of the second integral in equation (5.17)comes from the con-
dition of energy and momentum conservation and is given in Appendix A.6. The
integrals in equation (5.18) can be calculated analytically (Brinkmann 1984; Na-
girner & Poutanen 1994) to obtain a fully general expressionfor Rph(x, x1, γ1)
valid in all regimes (see Appendix A.8). This is an alternative form of the func-
tion derived by Jones (1968).

Since the total number of particles is conserved in Compton scattering, multi-
plying the right-hand side of equation (5.16) byx2 integrating overdx must give
zero, implying a relation between the redistribution function and the extinction
coefficient (Nagirner & Poutanen 1994)

s0(x) =
4π
x

∫ ∞

0
Rph(x1, x) x1 dx1 . (5.19)
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This can also be inferred directly from the definitions (5.14) and (5.15).
In the kinetic equation (5.5) for the photon densitynph(x) the Compton term is

obtained by multiplying equation (5.16) by 8πλ−3
C x3.

5.4.2 Compton scattering of electrons and positrons

The description of Compton scattering for electrons and positrons is very similar
to that for photons. In the linear approximation the RKE reads

p · ∇ñ±(p) =
r2

e

2
2

λ3
C

∫

d3x
x

d3x1

x1

d3p1

γ1
δ(p

1
+ x1 − p − x) F

×
[

ñph(x1)ñ±(p1) − ñph(x)ñ±(p)
]

. (5.20)

Neglecting spatial gradients, equation (5.20) becomes

Dñ±(p)
Dt

∣

∣

∣

∣

∣

coll,cs
= −c σT s0(p) Nph ñ±(p) + cσTNph

1
γ

∫

d3p1

γ1
Re(p1→ p) ñ±(p1),

(5.21)

where the scattering cross-section for electrons is

s0(p) =
3

16π
2

λ3
CNph

1
γ

∫

d3x
x

d3x1

x1

d3p1

γ1
ñph(x) F δ(p

1
+ x1 − p − x) (5.22)

and the redistribution function

Re(p1→ p) =
3

16π
2

λ3
CNph

∫

d3x
x

d3x1

x1
ñph(x1) F δ(p

1
+ x1 − p − x). (5.23)

Making use of the isotropy of the problem, we can rewrite the kinetic equation in
frameE for isotropic distribution ˜n±(p):

Dñ±(p)
Dt

∣

∣

∣

∣

∣

coll,cs
= −c σT s0(p) Nph ñ±(p) + cσTNph

4π
γ

∫

p1dγ1 Re(p, p1) ñ±(p1),

(5.24)

where the electron redistribution function averaged over cosine of the electron
scattering angleµe is

Re(p, p1) =
1
2

∫ 1

−1
Re(p1→ p) dµe =

3
16

2

λ3
CNph

∫ ∞

x⋆(γ,γ1)
Re(γ, γ1, x1) ñph(x1) dx1,

(5.25)

where

Re(γ, γ1, x1) =
1

4π2
x1

∫

d3x
x

d2ω1 d2Ω1 F δ(p
1
+ x1 − p − x) (5.26)
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and
x⋆(γ, γ1) = [γ − γ1 + |p − p1|]/2. (5.27)

The relation between the redistribution function and the extinction coefficient is

s0(p) =
4π
γ

∫

Re(p1, p) p1 dγ1. (5.28)

Not surprisingly, there turns out to be a relation between the quantitiesRph and
Re (proved in Appendix A.7), namely

pp1Re(γ, γ1, x1) = xx1Rph(x, x1, γ1), (5.29)

together with the energy conservation conditionx + γ = x1 + γ1. Through equa-
tions (5.29) and (5.18) we have a generally valid expressionalso forRe(γ, γ1, x1).

In the kinetic equation (5.6) for the electron and positron densitiesn±(p) the
Compton terms can be obtained by multiplying equation (5.24) by 8πλ−3

C p3.

5.5 Photon–photon pair production and pair anni-
hilation

The electron RKE accounting for pair production and annihilation processes can
be written as (Nagirner & Loskutov 1999)

p
−
· ∇ñ−(p−) =

r2
e

4
2

λ3
C

∫

d3p+
γ+

d3x1

x1

d3x
x
δ(p

−
+ p

+
− x1 − x) Fγγ

×
[

ñph(x1)ñph(x) − ñ−(p−)ñ+(p+)
]

, (5.30)

where we used subscripts∓ to explicitly show the momenta and the occupation
number of electrons and positrons. Assuming homogeneity, we get

Dñ−(p−)
Dt

∣

∣

∣

∣

∣

coll,pp
= −c σT spa(p−) N+ ñ−(p−) + c σT N2

ph

λ3
C

2
jpp(p−), (5.31)

where the pair annihilation cross-section (in units ofσT) is given by

spa(p−) =
3

32π
2

λ3
CN+

1
γ−

∫

d3p+
γ+

d3x1

x1

d3x
x

ñ+(p+) Fγγ δ(p
−
+ p

+
− x1 − x) (5.32)

and the pair-production rate by

jpp(p−) =
3

32π

(

2

λ3
CNph

)2 1
γ−

∫

d3p+
γ+

d3x1

x1

d3x
x

ñph(x)ñph(x1)Fγγδ(p
−
+p

+
−x1−x).

(5.33)
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The relativistically invariant reaction rateFγγ is (Berestetskii et al. 1982)

Fγγ =
ξ

ξ1
+
ξ1

ξ
+ 2

(

1
ξ
+

1
ξ1

)

−
(

1
ξ
+

1
ξ1

)2

, (5.34)

whereξ = p
−
· x = p

+
· x1 andξ1 = p

−
· x1 = p

+
· x.

Assuming again isotropic particle distributions in frameE, we can write equa-
tion (5.33) as

jpp(p−) = 3π

(

2

λ3
CNph

)2 1
γ−p−

∫ ∞

x(L)
ñph(x) dx

∫ ∞

x(L)
1

ñph(x1) dx1 Rγγ(γ−, x, x1), (5.35)

where we have defined

Rγγ(γ−, x, x1) =
1
2

1
(4π)2

xx1p−

∫

d3p+
γ+

d2ω d2ω1 Fγγ δ(p
−
+ p

+
− x1− x). (5.36)

The cross-section becomes

spa(p−) = 4π
2

λ3
CN+

∫ ∞

0
p2
+dp+ σpa(γ+, γ−) ñ+(p+), (5.37)

where

σpa(γ+, γ−) =
3
8

1
(4π)2

1
γ−γ+

∫

d3x1

x1

d3x
x

d2Ω+ Fγγ δ(p
−
+ p

+
− x1 − x). (5.38)

The treatment of positrons is identical if we switch the subscripts − and+ in
equations (5.30)–(5.38).

The photon kinetic equation accounting for pair production/annihilation pro-
cesses is

x · ∇ñph(x) =
r2

e

2
2

λ3
C

∫

d3x1

x1

d3p−
γ−

d3p+
γ+

δ(p
−
+ p

+
− x1 − x) Fγγ

×
[

ñ−(p−)ñ+(p+) − ñph(x1)ñph(x)
]

. (5.39)

Neglecting the spatial derivatives in the left hand side, this becomes

Dñph(x)

Dt

∣

∣

∣

∣

∣

coll,pp
= −c σT spp(x) Nph ñph(x) + c σT N− N+

λ3
C

2
jpa(x), (5.40)

where the pair-production cross-section is

spp(x) =
3

16π
2

λ3
CNph

1
x

∫

d3x1

x1

d3p−
γ−

d3p+
γ+

ñph(x1) Fγγ δ(p
−
+ p

+
− x1 − x) (5.41)
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and the emissivity due to pair annihilation

jpa(x) =
3

16π

(

2

λ3
C

)2 1
N−N+

1
x

∫

d3x1

x1

d3p−
γ−

d3p+
γ+

ñ−(p−)ñ+(p+)Fγγδ(p
−
+p
+
−x1−x).

(5.42)
Notice that unlike the electron equation, the photon equation is nonlinear owing to
the fact that the cross-section (5.41) depends explicitly on the photon distribution.

Under the isotropy assumption equations (5.41) and (5.42) in frameE become

jpa(x) = 6π

(

2

λ3
C

)2 1
N−N+

1
x2

∫ ∞

γ
(L)
+

ñ+(p+) dγ+

∫ ∞

γ
(L)
−

ñ−(p−) dγ−Rγγ(γ−, x, x1),

(5.43)

where we have to substitutex1 = γ− + γ+ − x from the energy conservation condi-
tion, and

spp(x) = 4π
2

λ3
CNph

∫ ∞

1/x
x2

1dx1 σpp(x, x1) ñph(x1), (5.44)

where

σpp(x, x1) =
3
4

1
(4π)2

1
xx1

∫

d3p−
γ−

d3p+
γ+

d2ω1 Fγγ δ(p
−
+ p

+
− x1 − x). (5.45)

Explicit expressions for the rateRγγ(γ−, x, x1) (derived by Svensson 1982, see also
Boettcher & Schlickeiser 1997 and Nagirner & Loskutov 1999)and the cross-
sectionsσpa(γ+, γ−), σpp(x, x1) as well as the lower integration limits in equations
(5.35) and (5.43) were given in Chapter 2.

The pair-production terms in equations (5.5) and (5.6) takethe form

ṅph,pp(x) = −cαpp(x) nph(x) + ǫpa(x), (5.46)

ṅ±,pp(p±) = −cαpa(p±) n±(p±) + ǫpp(p±). (5.47)

By comparing with equations (5.31) and (5.40) we find the absorption coefficients
and emissivities to be

αpp(x) = σT spp(x) Nph, ǫpa(x) = 4π c σT N− N+ x3 jpa(x), (5.48)

αpa(p±) = σT spa(p±) N∓, ǫpp(p±) = 4π c σT N2
ph p3

± jpp(p±). (5.49)

5.6 Synchrotron radiation

The kinetic equations describing synchrotron radiation need to be written in frame
E, where we assume there is only tangled magnetic field (and no electric field).
Using the Einstein coefficients and the cross-sections describing synchrotron emis-
sion and absorption (Ghisellini & Svensson 1991), we found in Chapter 3 that the
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collision terms for these processes in the electron/positron and photon equations
take the form (see also Ochelkov et al. 1979):

D
Dt

[

γp ñ±(p)
]

∣

∣

∣

∣

∣

coll,syn
=

∫ ∞

0
dx

∫ ∞

γ

dγ1 γ1p1
P(x, γ1)

x
δ(γ1 − γ − x)

×
{

ñ±(p1) [1 + ñph(x)] − ñ±(p) ñph(x)
}

−
∫ ∞

0
dx

∫ γ

1
dγ1 γp

P(x, γ)
x

δ(γ − γ1 − x)

×
{

ñ±(p) [1 + ñph(x)] − ñ±(p1) ñph(x)
}

, (5.50)

D
Dt

[

x2ñph(x)
]

∣

∣

∣

∣

∣

coll,syn
=

∫ ∞

1
dγ

∫ γ

1
dγ1 γp

P(x, γ)
x

δ(γ − γ1 − x)

×
{

ñe(p)[1 + ñph(x)] − ñe(p1)ñph(x)
}

. (5.51)

HereP(x, γ) is the angle-integrated cyclo-synchrotron spectrum of a single elec-
tron, normalized to the electron cooling rate:

∫ ∞

0
P(x, γ) dx = −γ̇s =

4
3
σTUB

mec
p2, (5.52)

whereUB = B2/(8π) is the magnetic energy density. One can readily verify that
equations (5.50) conserve the total number of electrons andpositrons, and that the
total energy is conserved by equations (5.50) and (5.51).

Under the physical conditions that we are interested in, theaverage energy (or
momentum) of an emitted or absorbed photon is much lower thanthe energy (mo-
mentum) of the electron taking part in the process. The standard way is therefore
to treat synchrotron processes as continuous cooling or heating for electrons and
as an emission or absorption process for photons.

We write the photon terms in the form

Dñph(x)

Dt

∣

∣

∣

∣

∣

coll,syn
= −cαs(x) ñph(x) +

λ3
C

8π
ǫs(x)

x3
, (5.53)

whereαs andǫs are cyclo-synchrotron absorption and emission coefficients, re-
spectively. In the kinetic equation (5.5) for the photon density nph(x) the corre-
sponding term can be obtained by multiplying equation (5.53) by 8πλ−3

C x3:

ṅph,syn(x) = −cαs(x) nph(x) + ǫs(x). (5.54)

The emissivityǫs gives the number of photons emitted per logarithmic dimen-
sionless energy intervald ln x, per unit volume and time and can be identified by
comparing the corresponding terms in equations (5.51) and (5.53):

ǫs(x) =
8π

λ3
C

∫

P(x, γ) p2ñe(p) dp =
∫

P(x, γ) ne(p) d ln p. (5.55)
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Similarly, by comparing the terms proportional to ˜nph we identify the absorption
coefficient (e.g. Twiss 1958; Rybicki & Lightman 1979):

αs(x) =
1

4πcx3

∫

d3p
[

ñe(p1) − ñe(p)
]

P(x, γ) = − 1
c x2

∫

dñe(p)
dp

P(x, γ) γp dp ,

(5.56)
where p1 =

√

(γ − x)2 − 1 is the electron momentum corresponding to energy
γ1 = γ − x and the second expression is obtained by expansion to the first order in
x ≪ γ.

In terms of the electron number densityne(p) the absorption coefficient takes
the form:

αs(x) =
λ3

C

8πc
1
x2

∫

γP(x, γ)
p2

[

3ne(p) − dne(p)
d ln p

]

d ln p. (5.57)

The synchrotron processes for electrons can be treated as continuous using the
Fokker-Planck equation. It can be obtained from equation (5.50) employing the
delta-function to take the integral overγ1 and expandingγ1p1 P(x, γ1) andn±(p1)
nearp to the second order in the small ‘parameter’x. Collecting the terms and
finally integrating over the photon energyx we get (see Chapter 3)

∂

∂t

[

γp ñ±(p)
]

= − ∂
∂γ

[

γ̇s γp ñ±(p) − H(p) γp
∂ñ±(p)
∂γ

]

+
1
2
∂2

∂γ2

[

H0(p) γp ñ±(p)
]

,

(5.58)
where

H(p) =
∫

P(x, γ) ñph(x) x dx =
λ3

C

8π

∫

P(x, γ)
x

nph(x) d ln x,

H0(p) =
∫

P(x, γ) x dx. (5.59)

To get the total electron energy gain/loss rate, one has to multiply equation (5.58)
by 8πλ−3

C γ dγ and integrate. Multiplying equation (5.53) by 8πλ−3
C x3dx and in-

tegrating gives the corresponding rate for photons. Using expressions (5.52),
(5.55), (5.56) and (5.59), we can verify that energy conservation is maintained
when switching from equation (5.50) to the continuous approximation (5.58).

The last term on the right-hand side of equation (5.58) corresponds to diffu-
sion due to spontaneous emission. However, as was discussedin Chapter 3, it is
expected to be negligible compared to the other terms in mostcases. Therefore,
we neglect the term withH0 in our simulations. Thus, for the distributionsn±(p),
equation (5.58) takes the form

ṅ±,syn(p) = − ∂

∂ ln p

[

Ae,syn(p)n±(p) − Be,syn(p)
∂n±(p)
∂ ln p

]

, (5.60)

where

Ae,syn(p) =

(

γ̇s+ 3
γ

p2
H(p)

)

γ

p2
, Be,syn(p) = H(p)

γ2

p4
. (5.61)
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It is worth mentioning here that other emission/absorption processes, e.g. brems-
strahlung, can be implemented analogously to the synchrotron radiation, once the
emissivity function of a single electronP(x, γ) (which now may depend on the
particle distribution) is specified.

5.7 Coulomb collisions

The RKE accounting for electron (positron) evolution due toCoulomb scatterings
is (see Chapter 4)

p · ∇ñ±(p) = r2
e

2

λ3
C

∫

d3p1

γ1

d3p′1
γ′1

d3p′

γ′
δ(p

1
+ p − p′

1
− p′) FCoul

× [

ñe(p′1)ñ±(p′) − ñe(p1)ñ±(p)
]

. (5.62)

The invariant reaction rate for Møller scattering (i.e.e−e− ande+e+) is given by
(Berestetskii et al. 1982)

FCoul =

(

ξ1

ξ − 1
+

ξ

ξ1 − 1
+ 1

)2

+
1− 4ξξ1

(ξ − 1)(ξ1 − 1)
+ 4 (5.63)

and the scalar products of particles’ four-momenta are defined asξ = p · p′ and
ξ1 = p

1
· p′. As discussed by Baring (1987) and Coppi & Blandford (1990),the

corresponding rates for Bhabhae±e∓ scattering are nearly the same in the small-
angle scattering approximation, we therefore do not distinguish between electrons
and positrons in these equations.

We saw in Chapter 4 that although the Coulomb process is collisional in na-
ture, it is necessary to treat it in the Fokker-Planck framework, i.e. as a continuous
diffusive energy exchange mechanism. This is due to the well-known divergent
nature of the Coulomb cross-section for small-angle scatterings with negligible
energy exchange per event, while in the parameter regimes weare interested in, a
large number of such scatterings dominates the energy gain or loss rate of a parti-
cle over a much smaller number of large-angle scatterings. In terms ofn±(p) the
Fokker-Planck equation (4.72) for isotropic particle distributions takes the form

ṅ±,Coul(p) = − ∂

∂ ln p

[

Ae,Coul(p)n±(p) − Be,Coul(p)
∂n±(p)
∂ ln p

]

(5.64)

with coefficients given by

Ae,Coul(p) =
γ̇Coulγ

p2
− ∂

∂γ

(

1
2
γDCoul

p2

)

, Be,Coul(p) =
1
2
γ2DCoul

p4
. (5.65)

The energy exchange rate and the diffusion coefficient can be obtained by calcu-
lating the first and second moments of equation (5.62) keeping only small-angle
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scatterings and are expressed as integrals over the particle distributions:

γ̇Coul =

∫

a(γ, γ1) ne(p1) d ln p1, DCoul(p) =
∫

d(γ, γ1) ne(p1) d ln p1.

(5.66)
The ratesa(γ, γ1) andd(γ, γ1) were given by equations (4.78) and (4.73) in Chap-
ter 4.
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Chapter 6

Numerical treatment

We numerically solve the set of coupled integro-differential equations of the gen-
eral form (5.7)–(5.8). We first define an equally spaced grid in the logarithms of
particles’ momenta:

ln pi = ln pmin + (i − 1) · ∆p, i ∈ [1, im], (6.1)

ln xl = ln xmin + (l − 1) · ∆x, l ∈ [1, lm]. (6.2)

Writing all differentials and integrals on the finite grids, we get three systems (for
photons, electrons and positrons) of linear algebraic equations of the general form

nk+1
i − nk

i

∆tk
=

im
∑

i′=1

Mk+1/2
i,i′ · 1

2

(

nk+1
i′ + nk

i′

)

, (6.3)

where∆tk is the size of thek-th (variable) timestep. Such semi-implicit differenc-
ing scheme, where both sides of the equation are centered at timestepk + 1/2, is
known as the Crank-Nicolson scheme (see e.g. Press et al. 1992). All physics is
contained within the matrixMi,i′ , which can be explicitly calculated at each step.
The systems of equations for all types of particles are solved stepwise, alternating
between equations and requiring a matrix inversion at everystep. After solving a
set of equations for photons, the updated photon distribution is used to calculate
matrix M for electron and positron equations. Then we solve for distributions of
electrons/positrons and substitute it to the photon equation and so on.

6.1 The Chang and Cooper scheme

The matrixMi,i′ of the linear system can be decomposed into two parts arising
from the differential and integral terms in equations (5.7)–(5.8). The differential
part contributes a tridiagonal matrix, the form of the equation (e.g. for electrons),
giving rise to it, is

nk+1
i − nk

i

∆tk
= − 1
∆p

[

Fk+1/2
i+1/2 − Fk+1/2

i−1/2

]

, (6.4)
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where the momentum space flux is given by

Fk+1/2
i+1/2 = Ak+1/2

i+1/2 nk+1/2
i+1/2 − Bk+1/2

i+1/2

nk+1/2
i+1 − nk+1/2

i

∆p
. (6.5)

The distribution function between time gridpoints is defined according to the
Crank-Nicolson scheme as (omitting the momentum index)

nk+1/2 =
1
2

(

nk+1 + nk
)

. (6.6)

We also have to somehow define the distribution function between momentum
gridpoints. Following Chang & Cooper (1970) we introduce a parameterδi so
that (now omitting the time index)

ni+1/2 = (1− δi)ni+1 + δini, δi ∈ [0, 1]. (6.7)

The basic idea of the Chang and Cooper scheme is to employ thisparameter to
ensure that the differencing scheme converges to the correct equilibrium solution
independently of the size of the gridstep∆p. Assuming that the momentum space
flux through the boundaries vanishes, the equilibrium solution tells us that it must
vanish everywhere, i.e.F = 0. From equations (6.5) and (6.7) we then have

ni+1

ni
=

δi Ai+1/2∆p + Bi+1/2

Bi+1/2 − (1− δi) Ai+1/2∆p
, (6.8)

while the exact solution gives (Chang & Cooper 1970)

ni+1

ni
= exp

[

Ai+1/2

Bi+1/2
∆p

]

. (6.9)

We can see that using either centered-differencing (δ = 1/2) or forward differenc-
ing δ = 0, equations (6.8) and (6.9) agree only to the first order inA∆p/B. To
make the correspondence exact, one has to equate the two equations and solve for
δi, to get

δi =
1
wi
− 1

exp(wi) − 1
, wi = −

Ai+1/2

Bi+1/2
∆p. (6.10)

Aside from converging to the correct equilibrium solution,such choice ofδi also
guarantees positive spectra, as shown by Chang & Cooper (1970). Although this
method applies to purely differential equations, we can still use it in our integro-
differential equations to ensure that the differential parttends toward its own cor-
rect equilibrium solution, which would also be the correct solution for the full
equation in the region where the differential terms happen to dominate.



6.2. TREATMENT OF COMPTON SCATTERING 107

6.2 Treatment of Compton scattering

Accurate numerical treatment of Compton scattering over a wide range of energies
is not straightforward. This is caused by the well-known fact that at different
energies the process takes place in different regimes. If the energy of a photon
in electron rest frame is much smaller than the electron restenergy, the process
takes place in the Thomson regime and the electron loses a very small amount
of its energy in one scattering. Correspondingly, there is asharp peak in the
electron redistribution functionRe nearp = p1. We cannot therefore numerically
resolveRe on our finite grid and have to treat the energy loss process as continuous.
On the other hand, for scattering in the Klein-Nishina regime the electron can
lose a significant amount of its energy in one scattering. Wishing to include both
regimes, we need a way to switch from the continuous approximation (implying a
differential equation) to direct calculation of scattering through the integral terms.
Similar treatment is required for photons, although the continuous approximation
is only needed in the regime where the photon energy is much lower than the
electron rest energy and the electron is non-relativistic.

6.2.1 Scattering of electrons: separation of regimes

Let us first look at the electron redistribution function (5.25). We wish to know
what is the lowest incoming photon energyx±⋆(p1) that can cause a shift in electron
momentump1 by |∆ ln p|. This energy is related to the lower limit (5.27) of the
integral in equation (5.25). If the shift is small enough, wecan write

x±⋆(p1) ≈ x⋆(γ, γ1) =
1
2

(±|∆γ| + |∆p|) ≈ 1
2

p1 |∆ ln p1|
(

1± p1

γ1

)

, (6.11)

where we have usedp dp = γ dγ. The plus sign applies when the electron gains
energy and the minus when it loses it. We see that for high energy electrons, the
minimum energy of photons for which we can resolve up- or downscattering is
vastly different. However, since the upscattering (energy increase) of relativis-
tic electrons is extremely inefficient, we concern ourselves only with being able
to resolve their downscattering (i.e. cooling) and so use the minus sign in equa-
tion (6.11). Choosing|∆ ln p1| comparable to our grid step (we use somewhat
arbitrarily 3∆p) in the electron equation, we then state that scattering of electrons
on photons withx1 < x−⋆(p1) cannot be resolved.

We now split the redistribution function into two parts according to whether
we can or cannot resolve it on our grid

Re(p, p1) = R
<

e (p, p1) + R
>

e(p, p1), (6.12)

where for the first term the integral in equation (5.25) is taken overx1 < x−⋆(p1),
and the second term is defined by integrating over the remaining x1. To totally
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isolate scatterings that undergo on photons with energies below and abovex−⋆, we
have to write the extinction coefficient as an analogous sum,s0(p) = s<0(p)+ s>0(p),
where

s≶0(p) =
4π
γ

∫

R
≶

e(p1, p) p1 dγ1 , (6.13)

in accordance with equation (5.28). For the terms containing R
>

e ands>0 in the elec-
tron equation, we compute the integrals through the discrete sums, but the terms
containingR

<

e and s<0 have to be accounted for by continuous energy exchange
terms in the equation. Since we also want to treat thermalization by Compton
scattering, these terms have to contain a second order derivative of the electron
distribution (a diffusive term). Therefore, we take the standard form of the Fokker-
Planck equation

Ṅ±,diff,cs(γ) = − ∂
∂γ

{

γ̇c N±(γ) − 1
2
∂

∂γ

[

De(γ) N±(γ)
]

}

, (6.14)

while the exact equation for the (<) terms comes from equation (5.24), written
here forN±(γ)

Ṅ<
±,coll,cs(γ) = −cσT s<0 (p) Nph N±(γ) + 4π cσTNph p

∫

dγ1

γ1
R
<

e(p, p1) N±(γ1).

(6.15)
In order to make a physically sensible correspondence between these two repre-
sentations, we demand that the first three moments of equations (6.14) and (6.15)
were identical. Substituting equation (6.13) to (6.15) we find

∫

Ṅ<
±,coll,cs(γ)γidγ

= 4π cσTNph

∫

dγ
∫

dγ1 γ
i

{

− p1

γ
R
<

e(p1, p) N±(γ) +
p
γ1

R
<

e(p, p1) N±(γ1)

}

= 4π cσTNph

∫

dγ
∫

dγ1
p1

γ

(

γi
1 − γi

)

R
<

e(p1, p) N±(γ)

= cσTNph

∫

dγ (γi
1 − γi) s<0 (p) N±(γ) , (6.16)

where similarly to the moments of the photon redistributionfunction (Nagirner &
Poutanen 1994), we defined the moments of the electron redistribution function

γi
1 s<0(p) ≡ 4π

γ

∫

p1γ
i
1 dγ1 R

<

e(p1, p). (6.17)

The zeroth moment (giving zero in the right-hand side of eq. [6.16]) is just a
statement of particle number conservation, while the first moment gives the total
rate at which the electrons gain (or lose) energy. The moments defined by equa-
tion (6.17) can be calculated analytically using the exact Klein-Nishina scattering
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cross-section. For photons this was shown by Nagirner & Poutanen (1994), while
the extension of these calculations to the electrons is given in Appendix A.9.

The moments of the continuous approximation (6.14) are
∫

Ṅ±,diff,cs(γ) dγ = 0, (6.18)
∫

Ṅ±,diff,cs(γ) γ dγ =
∫

γ̇c N±(γ) dγ, (6.19)
∫

Ṅ±,diff,cs(γ) γ2 dγ =
∫

[

2γγ̇c + De(γ)
]

N±(γ) dγ. (6.20)

Here we have assumed that the distribution functionN±(γ) vanishes at the bound-
aries of integration. Exact correspondence with equation (6.16) can be made if we
identify

γ̇c = cσTNph (γ1 − γ) s<0 (p), De(γ) = cσTNph (γ1 − γ)2 s<0(p), (6.21)

while for the zeroth moment the correspondence is automatic. These moments can
be computed using equations (A.66) and (A.67) given in Appendix A.9. Finally,
we write equation (6.14) throughn±(p) and in the form that can be included in the
Chang & Cooper differencing scheme together with other terms

ṅ±,diff,cs(p) = − ∂

∂ ln p

[

Ae,cs(p)n±(p) − Be,cs(p)
∂n±(p)
∂ ln p

]

, (6.22)

where

Ae,cs(p) =
γ̇cγ

p2
− ∂

∂γ

(

1
2
γDe(γ)

p2

)

, Be,cs(p) =
1
2
γ2De(γ)

p4
. (6.23)

6.2.2 Scattering of photons and three-bin approximation

Insufficient resolution of numerical calculations can become an issue also for the
scattering of photons if the electron energies are low enough. A photon will then
exchange very little energy with an electron upon scattering and the redistribution
function is strongly peaked nearx = x1. To overcome this we propose the follow-
ing approach. We separate scatterings that take place within some narrow interval
around the energy of the incoming photon from those invokingphoton energy
outside this interval. We then approximate the scatteringstaking place within the
central interval by a continuous process and account for this by differential terms
calculated through the exact moments of the redistributionfunction.

To keep the correspondence to the electron equation, we rewrite the photon
evolution equation (5.16) in terms ofNph(x):

Ṅph,coll,cs(x) = 4π cσTNe

{∫

<

dx1

[

Nph(x1)
x
x1

Rph(x, x1) − Nph(x)
x1

x
Rph(x1, x)

]

+

∫

∈
dx1

[

Nph(x1)
x
x1

Rph(x, x1) − Nph(x)
x1

x
Rph(x1, x)

]}

, (6.24)
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where the extinction coefficient is expressed explicitly throughRph using equa-
tion (5.19). Here∈ stands for the interval [xe−δx , xeδx ] and < means integration
from 0 to∞ excluding that interval. The width of the central region (2δx in log
units) is somewhat arbitrary, but should include at least a couple of bins, with our
choice being three, i.e.δx =

3
2∆x.

For the second integral in equation (6.24) we wish to write a continuous ap-
proximation similar to equation (6.14)

Ṅph,diff,cs(x) = − ∂
∂x

{

ẋc Nph(x) − 1
2
∂

∂x

[

Dph(x) Nph(x)
]

}

. (6.25)

Similarly to what was done for electrons, the coefficients in equation (6.25) are de-
termined from the requirement that the first three moments ofthe differential and
integral equations coincide. The moments of the ’central’ part of equation (6.24)
(denoted by∈) are
∫ ∞

0
Ṅ∈ph,coll,cs(x) xi dx = 4π cσTNe

∫ ∞

0
dx

∫

∈
dx1

(

xi
1 − xi

) x1

x
Rph(x1, x) Nph(x),

(6.26)

where the integration limits forx andx1 in the first term were switched, because
for constantδx the area on the (x, x1) plane is the same. The moments of the
differential equation are similar to what were obtained for electrons

∫ ∞

0
Ṅ∈ph,diff,cs(x) dx = 0, (6.27)

∫ ∞

0
Ṅ∈ph,diff,cs(x) x dx =

∫ ∞

0
ẋc Nph(x) dx , (6.28)

∫ ∞

0
Ṅ∈ph,diff,cs(x) x2 dx =

∫ ∞

0

[

2xẋc + Dph(x)
]

Nph(x) dx. (6.29)

Equations (6.26) and (6.27)–(6.29) give identical expressions for the first three
moments of the ’central’ part of the equation if we identify

ẋc = 4π cσTNe

∫

∈
dx1 (x1 − x)

x1

x
Rph(x1, x),

Dph(x) = 4π cσTNe

∫

∈
dx1 (x1 − x)2 x1

x
Rph(x1, x). (6.30)

The 0-th moment is identically zero for both equations (6.26) and (6.27), implying
particle conservation.

The integrals in equations (6.30) are computed numericallyat a finer grid. At
low photon energies, the redistribution function can be narrower than the whole
integration interval, and integration can present a problem. In this case, however,
we can extend the integration limits in equations (6.30) from 0 to∞ and to calcu-
late the moments of the redistribution function analytically (Nagirner & Poutanen
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1994). Using the limits onγ⋆, given by equation (A.42) in Appendix A.6, one can
show that scattering takes place entirely within the central interval ∈ for incident
photons and electrons satisfying the following relations:

x <
δx

2
, p < p−⋆(x) =

δx

2
− x. (6.31)

We can write the moments of the redistribution function in a way similar to equa-
tion (6.17):

xi
1 s<0(x) ≡ 4π

x

∫

xi+1
1 dx1 R

<

ph(x1, x), (6.32)

where the< superscript signifies that only electrons withp < p−⋆(x) are taken into
account. Equations (6.30) then (forx < δx/2) become

ẋc = cσTNe (x1 − x) s<0 (x), Dph(x) = cσTNe (x1 − x)2 s<0 (x), (6.33)

and can be computed using equations (A.60)–(A.61) in Appendix A.9.
For numerical differencing equation (6.25) has to be written in the form

ṅph,diff,cs(x) = − ∂

∂ ln x

[

Aph,cs(x)nph(x) − Bph,cs(x)
∂nph(x)

∂ ln x

]

, (6.34)

where

Aph,cs(x) =
ẋc

x
− ∂

∂x

(

1
2

Dph(x)

x

)

, Bph,cs(x) =
1
2

Dph(x)

x2
. (6.35)

6.3 Pair production and annihilation

The numerical treatment of pair production and annihilation processes in our code
is fairly straightforward. The only potential difficulty can arise from the non-
linearity of the absorption term in the photon equation. To deal with this we have
chosen the simplest possible approach: for calculating thepair-production opac-
ity at each step we simply use the photon distribution from the previous step. The
error caused by doing so is not expected to be significant in most cases. It is
well-known that a photon of energyx will most efficiently interact with photons
of energyx1 ≈ 3/x, thus if its energy is not very close to the electron/positron
rest energy, the photon will most likely annihilate on another photon of a vastly
different energy than its own. Therefore, we can visualize two separate popula-
tions of photons that pair-produce on each other, with the dividing energy atmec2.
The photon distribution from the previous step is then takento be the ’target’
population on which the photons that are being evolved pair produce.

Since we wish the numerical scheme to treat electrons and positrons identi-
cally (particularly when we are dealing with pure pair plasma), while at each step
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one of them has to be evolved first when the outcome of the otheris yet unknown,
we use a fully implicit scheme for the pair annihilation terms.

The quantitiesRγγ(γ−, x, x1), σpa(γ+, γ−) andσpp(x, x1) defined by equations
(5.36), (5.38) and (5.45) are precalculated on a fine grid andthereafter averaged
within the electron/positron and photon bins used by the code. The integrals in
the expressions (5.35), (5.37), (5.43) and (5.44) for emissivities and absorption
coefficients are calculated through discrete sums.

6.4 Treatment of synchrotron processes

One of the main difficulties in numerically treating synchrotron processes in com-
pact sources is that the optical thickness of the medium due to self-absorption
might become extremely large at low energies compared to, say, Thomson opti-
cal thickness. Almost all photons that are produced are immediately absorbed,
so very few escape. But the energy which those few carry away comes from the
small net energy exchange rate between electrons and photons, which we need to
keep track of to maintain the energy balance. Near the equilibrium, in the pho-
ton equation we have two large terms describing emission andabsorption, which
nearly exactly cancel out. A small error in either of them produces a significant
error in the total energy transfer rate. In the electron equation this transfer rate
is given by the difference in the synchrotron cooling and heating rates. To main-
tain the energy balance between the two equations, we need toensure that in our
numerical scheme these rates are seen identically by both equations.

In discretized form, the synchrotron processes for electrons/positrons are de-
scribed by equations (6.4)–(6.5), withn = n±, A = Ae,syn andB = Be,syn. To obtain
the total energy gain we have to multiply equation (6.4) byγi ∆p, sum overi and
sum the corresponding terms in the electron and positron equations. Assuming
vanishing boundary currents, we have

∆Ee

∆tk ∆V
=

im−1
∑

i=1

∆γi+1/2

[

Ai+1/2 ne,i+1/2 − Bi+1/2
ne,i+1 − ne,i

∆p

]

, (6.36)

where∆γi+1/2 ≡ γi+1 − γi and we have omitted the time indexk + 1/2 for brevity.
The exchange rate as seen by the photon equation can be evaluated by writing the
integrals in emissivity and absorptivity expressions (5.55) and (5.57) as sums over
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the grid, multiplying equation (5.54) byxl ∆x and summing overl:

∆Eph

∆tk ∆V
=

lm
∑

l=1

[

−c xl αl nph, l + xl ǫ l

]

∆x

=
λ3

C

8π

lm
∑

l=1















nph, l

xl
∆x

im
∑

i=1

γiPl,i

p2
i

∆p

(

−3ne,i +
ne,i+1 − ne,i

∆p

)















+

lm
∑

l=1















xl ∆x

im
∑

i=1

ne,i Pl,i ∆p















,

wherePl,i = P(xl, γi). Changing the order of summation, identifying the sum
over the photon distribution as the discretized version of the definitionH(p), and
noticing that

∑

l Pl,ixl∆x gives the electron cooling rate−γ̇s,i, we get:

∆Eph

∆tk ∆V
=

im
∑

i=1

∆p

[

−
(

γ̇s,i +
3γiHi

p2
i

)

ne, i +
γiHi

p2
i

ne, i+1 − ne, i

∆p

]

. (6.37)

To make equations (6.36) and (6.37) identical (except for the sign) we have to
make subtle changes in the definition of coefficients and the way integrals are
numerically calculated. In equation (6.37) we have to definethe coefficients in
between the electron momentum gridpoints, ati + 1/2, substitute the electron
distributionne, i by ne, i+1/2 (except in the derivative term), where the latter is cal-
culated using the same Chang & Cooper coefficientsδi as in the electron equation,
and sum up toi = im − 1 instead ofim. This amounts to defining the emission and
absorption coefficients as

ǫl =

im−1
∑

i=1

Pl,i+1/2 ne, i+1/2 ∆p,

αl =
λ3

C

8π
1

x2
l

im−1
∑

i=1

γi+1/2 Pl,i+1/2

p2
i+1/2

[

3ne,i+1/2 −
ne,i+1 − ne,i

∆p

]

∆p. (6.38)

Also, the coefficientsA andB entering the momentum space flux (6.5) and thus
also the electron energy exchange rate (6.36) should be written as

Ai+1/2 =
∆p

∆γi+1/2

(

γ̇s+ 3
γ

p2
H

)

i+1/2

and Bi+1/2 =
∆p

∆γi+1/2

(

γ

p2
H

)

i+1/2

, (6.39)

which become identical to (5.61) in the limit∆p → 0 and ensure that the energy
exchange rates as seen by the electron and photon equations are the same.

The only discrepancy left is that we cannot use the samenk+1/2
ph andnk+1/2

e in
both equations. This is because each of them contains a function nk+1, which, in
the equation that we evolve before, is not known for the othertype of particle. The
solution to this, at least in the average sense, is to regard the time-grids for each
equation as shifted by a half timestep. Thennk+1 obtained from one equation can
be used asnk+1/2 in the other and vice versa.
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6.5 Coulomb collisions

Coulomb scattering only redistributes the energy between different parts of the
lepton population. It is easy to see that the total energy is conserved in the sum of
two equations (5.64) for electrons and positrons, providedthata(γ, γ1) is antisym-
metric, the latter simply reflects the energy conservation in two-body interactions.
Similarly to synchrotron, our numerical treatment has to ensure that the conserva-
tion is exact, otherwise unphysical runaways can occur nearthe equilibrium.

The flux in momentum space in equation (6.4) for Coulomb scattering is given
by equation (6.5) with coefficients expressed as (see eq. (5.65))

Ai+1/2 =

(

γ̇γ

p2

)

i+1/2

− 1
2∆γi+1/2

[(

γD
p2

)

i+1

−
(

γD
p2

)

i

]

, Bi+1/2 =
1
2

(

γ2D
p4

)

i+1/2

.

(6.40)

The total energy exchange rate is identical to equation (6.36) for synchrotron.
Let us now look separately at terms containing ˙γ andD. For γ̇ we have

∆Ee

∆tk ∆V

∣

∣

∣

∣

∣

γ̇

=

im−1
∑

i=1

∆γi+1/2

(

γ̇ γ

p2

)

i+1/2

ne,i+1/2. (6.41)

It is now easy to see that this quantity can be made to vanish ifwe write

γ̇i+1/2 =

im−1
∑

l=1

a(γi+1/2, γl+1/2) ne,l+1/2∆p and

(

γ̇ γ

p2

)

i+1/2

→ γ̇i+1/2
∆p

∆γi+1/2
, (6.42)

provided thata is antisymmetric. The terms containingD(γ) in the energy ex-
change rate are

∆Ee

∆tk ∆V

∣

∣

∣

∣

∣

D
= −1

2

im−1
∑

i=1











[(

γD
p2

)

i+1

−
(

γD
p2

)

i

]

ne,i+1/2 +

(

γD
p2

)

i+1/2

(

ne,i+1 − ne,i
)











,

(6.43)

where we have redefined the coefficientB as

Bi+1/2 →
1
2

∆p

∆γi+1/2

(

γD
p2

)

i+1/2

. (6.44)

One can see that equation (6.43) has the form of an integral over a full differential
and, as such, should vanish provided thatD = 0 at the boundaries. To ensure
this numerically for any electron distribution we write explicitly ne,i+1/2 = (1 −
δi)ne,i+1 + δine,i and demand that the coefficient in front ofne,i in equation (6.43) is
equal to zero for everyi. Rearranging terms, we get
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The expression in the curly brackets is identically zero if we set
(

γD
p2

)

i+1/2

= δi

(

γD
p2

)

i+1

+ (1− δi)

(

γD
p2

)

i

, (6.46)

while the boundary termsS − andS + vanish if
(

γD
p2

)

1

= 0 and

(

γD
p2

)

im

= 0. (6.47)

Using expressions (6.42) in the first term in coefficient A and equations (6.46)
and (6.47) in the definition (6.44), we ensure precise energyconservation in the
numerical scheme.



116 CHAPTER 6. NUMERICAL TREATMENT



Chapter 7

Numerical tests

Our careful treatment of the micro-physical processes makes the code applicable
over a wide range of parameter regimes. The current version covers 15 orders of
magnitude in photon energy (from 10−5 to 1010 eV) and 8 orders of magnitude
in electron momentum, while there is no fundamental difficulty in extending this
range further, e.g. to TeV energies for application to blazars. Energy conservation
is achieved to within 1% in the majority of cases. All the rates and cross-sections
of different processes have been precalculated once and for all andare read into
memory as the code initializes. A typical simulation for 200grid points in photon
energy and electron momentum on a 3 GHz PC running Linux takesbetween a
few minutes and half an hour.

In order to test the performance of our code in different parameter regimes,
we have chosen three setups from earlier works and run the code with similar
parameters for comparison.

7.1 Non-thermal pair model

As a first test we compare our code to the well-known pair plasma codeeqpair by
Coppi (1992, 1999).eqpair also considers an uniform emission region into which
high-energy electrons/pairs are injected, mimicking an unspecified acceleration
mechanism. Some low-energy photons are also injected, emulating a source of ex-
ternal soft radiation (e.g. accretion disk). The high-energy pairs cool by Compton
scattering and Coulomb energy exchange with colder thermalpairs. The Comp-
ton upscattered photons can produce electron-positron pairs which then upscatter
more photons etc., initiating a pair cascade. Once the pairscool down to low
enough energies, the timescale of the systematic energy losses becomes longer
than that of diffusive processes, leading to relaxation into a low-energy thermal
distribution. Ineqpair, Coulomb collisions between particles are assumed to be the
thermalizing mechanism. However, the thermalization process is not treated en-
tirely consistently in this code in a sense that there existsonly one thermal bin into
which particles are put once they have cooled below a certainthreshold energy,
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Figure 7.1: Equilibrium (a) photon spectra and (b) electron distributions (Thom-
son optical depth per lnp, i.e. ne(p)σTR) for various stochastic heating compact-
nesseslth as labeled. The size of the emission region isR = 1014 cm, the soft
input radiation has a compactnessls = 10 and a blackbody temperatureTBB = 15
eV, the injection compactness islnth = 10. The thin solid line on the right panel
shows a Maxwellian fit of temperatureTe = 53 keV. Compare to Figure 1 in Coppi
(1999).

chosen to beγ = 1.3. The electron temperature associated with this thermal bin is
nevertheless calculated self-consistently from energetic considerations. Further-
more, the code does not consider thermalization by synchrotron self-absorption,
which can be an efficient mechanism if the medium is magnetized (Ghisellini et al.
1988, 1998).

The setup of this test run is similar to what was used for Figure 1 in Coppi
(1999). We switched off synchrotron processes in our code and left other pro-
cesses. We inject a Gaussian distribution of pairs centeredat γinj = 103 and a
low-energy blackbody distribution of photons. In addition, there is a background
electron plasma present with optical depthτp = 0.1. There is no escape term for
pairs, meaning that all injected pairs eventually annihilate transferring their energy
to the radiation field. The power injected as non-thermal pairs is parametrized by
compactness

lnth =
σT

mec3

Lnth

R
, (7.1)

where Lnth is the injected luminosity (including rest mass) andR is the linear
dimension of the emission region. Similarly, we define the compactness of the
injected soft radiation as

ls =
σT

mec3

Ls

R
, (7.2)
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whereLs is the relevant luminosity. To mimic acceleration with lessthan 100%
efficiency, additional power is supplied to low-energy electrons in the form of
continuous heating, parametrized bylth. In Coppi (1999) this energy was just
given to the thermal bin, but since we do not have such bin in our code, we need to
explicitly specify the form of this heating. This is done by stochastic acceleration
prescription of the form

Dñ±(p)
Dt

∣

∣

∣

∣

∣

stoch.
=

1
p2

∂

∂p

[

p2Dacc(p)
∂ñ±(p)
∂p

]

. (7.3)

The momentum diffusion coefficient is assumed to take the form characteristic of
stochastic acceleration by resonant interactions with plasma waves (Dermer et al.
1996),Dacc(p) ∝ pq. We have chosenq = 2 in our calculations. The mean energy
gain rate of a particle resulting from equation (7.3) is

〈
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〉
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∣

∣
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∣

stoch.

=
1
p2

∂

∂p

[

βp2Dacc(p)
]

, (7.4)

whereβ = p/γ is the particle speed. We can see that for a power-law diffusion
coefficient the gain rate is proportional topq−1 in the relativistic regime, while in
the nonrelativistic regime it is proportional topq. Our choiceq = 2 means that at
high energies Compton losses always overcome gains by stochastic acceleration,
the main effect of the latter process is therefore the heating of low-energy pairs.

The differential term given by equation (7.3) is included in the Chang &
Cooper scheme on the same grounds with other continuous terms. Therefore be-
fore discretization it has to be written in the form compatible with equations (6.4)
and (6.5):

Dn±(p)
Dt
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∣

∣

∣

∣

stoch.
= − ∂

∂ ln p

{

Dacc(p)
1
p2

[

3n±(p) − ∂n±(p)
∂ ln p

]}

. (7.5)

The results of the test are shown in Figure 7.1. Varying the amount of stochas-
tic heating (lth) keeping all other parameters constant, we see that we can well re-
produce the behavior of the spectrum in Figure 1 in Coppi (1999). Just as expected
by Coppi (1999), the equilibrium electron distribution is hybrid: Maxwellian at
low energies with a nonthermal high-energy tail. Note that we get such shape even
if we switch offCoulomb scattering. The thermal-looking distribution is produced
by the stochastic heating itself, which gives a Maxwellian slope at low energies
irrespective of the shape ofDacc(p), while the location of the peak of the distri-
bution is determined by the balance between heating and Compton cooling. The
behavior of the spectrum in response to varying the power of stochastic heating
seen in Figure 7.1(a) was analyzed in detail by Coppi (1999),we are not going to
repeat it here.
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7.2 Thermalization by synchrotron self-absorption

For the second test, we compared our results with these of Ghisellini et al. (1998)
They studied electron thermalization by synchrotron self-absorption in the pres-
ence of Compton cooling. The electron cooling, heating and diffusion due to
the synchrotron were described by equation (5.58) (withoutthe last term), while
Compton scattering was assumed to take place in the Thomson regime and con-
tribute only to systematic cooling. Furthermore, the treatment was not fully self-
consistent since only the electron equation was actually solved. While the equilib-
rium synchrotron spectrum was self-consistently calculated at each timestep from
the formal solution of the radiative transfer equation, theComptonized spectrum
was not. Thus only the synchrotron spectrum entered the electron heating rate by
self-absorption, while the radiation energy density needed to account for Compton
cooling was estimated from energetic considerations.

We ran our code with the same parameters used to obtain the results in Figures
1 and 2 in Ghisellini et al. (1998). The pair production/annihilation and Coulomb
scattering have been switched off for this test. High-energy electrons are injected
into the emission region, with the total power (including rest mass) parametrized
by the injection compactnesslnth. The magnetic compactness is defined by

lB =
σT

mec2
RUB, (7.6)

whereUB is the magnetic energy density. In addition there is an external source
of soft blackbody photons assumed to arise from reprocessing half of the hard
radiation by cold matter in the vicinity of the emission region. The electron escape
timescale is fixed attesc= R/c.

In the first case the injected electrons have a Gaussian distribution peaking
at γ = 10. The evolution of this distribution is followed in time asit cools and
thermalizes by Compton and synchrotron processes. We can see that our results
shown in Figure 7.2 are almost identical to those presented in Figure 1 in Ghis-
ellini et al. (1998). However, we would like to stress that wealso compute self-
consistently the photon spectrum. We see the partially self-absorbed synchrotron
bump at small energies, then the blackbody photons and two Compton scattering
orders at higher energies.

In the second case we calculated the steady-state particle distributions for dif-
ferent injection compactnesses. The injected electron distribution (per unit lnp)
is

Qe = Q0
p3

γ2
exp

(

− γ
γc

)

, (7.7)

whereγc = 3.33. The resulting equilibrium electron distributions plotted in Fig-
ure 7.3(b) are again very similar to the ones obtained by Ghisellini et al. (1998)
in their Figure 2. The corresponding radiation spectra shown in Figure 7.3(a)
are computed self-consistently and simultaneously with the electron distribution
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Figure 7.2: Evolving (a) photon spectra and (b) electron distributions (τ(p) =
σTRne(p)/p) for Gaussian electron injection under action of Compton and syn-
chrotron processes at different times (inR/c units) as labeled. The source size is
R = 1013 cm, the magnetic compactness islB = 10 and the injection compactness
lnth = 1. Compare to Figure 1 in Ghisellini et al. (1998).

Figure 7.3: Equilibrium (a) photon spectra and (b) electron distributions for injec-
tion (7.7) for various injection compactnesseslnth as labeled. Parameters:R = 1013

cm, lB = 30. Compare to Figure 2 in Ghisellini et al. (1998).
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(while the spectra in Figure 4 of Ghisellini et al. (1998) arecalculated a posteriori,
i.e. after the equilibrium electron distribution has been determined). As discussed
in Ghisellini et al. (1998), if the source is strongly magnetically dominated, the
equilibrium distribution is almost purely Maxwellian. When the injection com-
pactness increases, Compton losses become non-negligibleand the electrons cool
down to lower energies before they have time to thermalize. Notice that at the
highest compactness (lnth = 100) the temperature of the Maxwellian part of the
distribution inferred from Figure 7.3(b) deviates appreciably from the one ob-
tained by Ghisellini et al. (1998). This is caused by the factthat at high compact-
ness a significant fraction of the soft radiation is Compton upscattered to energies
comparable to the energies of the Maxwellian electrons. These photons are there-
fore not effective in cooling the electrons any further. However, in Ghisellini et al.
(1998) Compton cooling is accounted for through a term proportional to the radi-
ation energy density, which includes all photons, and therefore overestimates the
cooling rate. Overall, the simple prescription for Comptoncooling without actu-
ally solving the photon equation appears to work well in the parameter regimes
considered here.

7.3 Gamma-ray bursts from stochastically
heated pairs

Finally, we compare our code to the Large Particle Monte Carlo code by Stern
et al. (1995a), with all the processes operating now. The setup is similar to the one
used in Stern & Poutanen (2004) for simulating the spectral evolution of gamma-
ray bursts. They consider an initially optically thin distribution of electrons in
a cylinder-shaped emission region. Arguing that impulsivefirst-order Fermi ac-
celeration would result in cooling spectra that are too softto be consistent with
observations, energy is instead supplied to the electrons continuously, mimicking
dissipation by plasma instabilities behind the shock front. As electrons are heated
to relativistic energies in the prescribed background magnetic field, they emit syn-
chrotron radiation, providing seed photons for Compton upscattering. The high-
energy upscattered photons then initiate pair-production.

In our simulation we consider a spherical region permeated by magnetic field
and start by heating a cold electron distribution (with initial Thomson optical
depthτ0 = 6 × 10−4) according to the stochastic acceleration prescription (7.5).
No pair escape is allowed. The results of simulations are shown in Figure 7.4
and can be compared to a similar Figure 2 in Stern & Poutanen (2004). In both
cases the electrons are rapidly heated to aboutγ ∼ 100, as determined by the
balance between stochastic heating and synchrotron cooling. As the photon field
builds up, additional cooling by Compton scattering causesthe electron ’temper-
ature’ to start dropping. After about 1/3 of the light crossing time, the number of
photons upscattered to the MeV range becomes large enough tostart significant
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Figure 7.4: Evolving (a) photon spectra and (b) Thomson optical depth per lnp for
stochastically heated pairs at different times (in unitsR/c) as labeled. Parameters:
the source sizeR = 1013 cm, the magnetic compactnesslB = 0.3, the stochastic
heating compactnesslth = 30, the initial Thomson optical depth of electrons is
τ0 = 6 × 10−4. For t = 0.1, 0.3 we also plot positrons, at later times only the
electrons as their opacities are nearly identical. Compareto Figure 2 in Stern &
Poutanen (2004).

pair-production. With the increasing pair density (att = 1, opacity has grown
by a factor of 20) the available energy per particle decreases, causing a further
drop in the temperature of the now almost pure pair plasma. After about ten light-
crossing times the Thomson opacity isτT = 1.3 and the pair density reaches the
value where the pair annihilation and creation rates are balanced and a steady state
is attained.

The spectral behavior seen in Figure 7.4(a) is similar to what was obtained by
Stern & Poutanen (2004). The synchrotron peak rises first, being initially in the
optically thin regime and thus following the evolution of the peak of the electron
distribution according tox ∝ γ2. The first Compton scattering order lags slightly
behind synchrotron, while the second scattering order is initially in Klein-Nishina
regime and thus hardly visible at all. As the electron temperature drops and the
peak of the first scattering order evolves to lower energies,the second order shifts
to the Thomson regime and becomes comparable to and eventually dominant over
the first order. At the same time the decreasing temperature and increasing pair
opacity causes the synchrotron emission to switch to optically thick regime and
the synchrotron luminosity to drop dramatically. The plasma becomes photon
starved and the Comptonized spectrum hardens.
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Part III

Astrophysical applications
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Chapter 8

Gamma-ray bursts from
neutron-loaded flows

Gamma-ray bursts (GRB) are short-lived and extremely powerful events associ-
ated with the birth of a compact object that undergoes a briefepisode of hyper-
accretion and is capable of launching ultra-relativistic jets. If such jet happens to
point towards the observer, an intense flash of soft gamma-rays is seen, followed
by longer-lasting emission at longer wavelengths (the afterglow).

Apart from the jet launching itself, one of the primary questions in GRB sci-
ence concerns the way the energy deposited into the flow by thecentral engine is
converted into observable radiation. When the jet is launched, its internal energy
strongly dominates over its rest mass energy, which allows it to accelerate to rel-
ativistic velocities. If the magnetic field is not dynamically dominant, this energy
is in the form of radiation. It is generally assumed that in such case most of the
radiation energy is converted to the bulk kinetic energy of the outflow before the
latter becomes optically thin and allows the radiation to escape. The question then
is how to recover this energy to produce the observed non-thermal emission.

One way of converting ordered bulk motion to random (thermal) motions is
through shocks, which take place when the flow encounters slower-moving mate-
rial. This can occur within the flow itself when a faster-moving shell catches up a
slower one (so-called internal shocks) or when the ejecta plough into the interstel-
lar medium (external shocks) (for a review, see Piran 2004).The former is usually
thought to be responsible for the prompt emission and the latter for the afterglow.
Significant advances have recently been made in simulating the dynamics of rela-
tivistic shocks. The latest ab initio particle-in-cell (PIC) simulations now begin to
provide answers to long-standing questions like the natureof particle acceleration,
generation of the magnetic field, energy exchange between electrons and ions etc.
(Spitkovsky 2008a,b).

In spite of these developments, the internal shock model faces several difficul-
ties in trying to explain prompt GRB emission. First is the well-known efficiency
problem: since bulk of the GRB energy appears to be released in the prompt phase
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(as opposed to the afterglow), a significant fraction of the flow kinetic energy has
to be dissipated at this stage. This however requires a largevariation of shell
Lorentz factors (Beloborodov 2000; Kobayashi & Sari 2001).Another problem
concerns the spectra produced in such shocks. It is conventionally assumed that
the timescales associated with plasma processes responsible for particle energiza-
tion near the shock front are significantly shorter than the timescales for radiative
losses. It would therefore seem natural to visualize instantaneous injection of
high-energy particles into the emission region. However, this approach leads to
the problem that the produced spectra (so-called cooling spectra,Fν ∝ ν−1/2) will
be too soft to account for the majority of GRB spectral hardnesses (Preece et al.
2000). Alternatively, hard spectra could be produced if theelectrons emit in the
slow cooling regime (Panaitescu & Mészáros 2000) which, however, leads to very
low radiative efficiency. As another alternative the energy could be shared among
a large number of particles and doled out continuously throughout the lifetime
of the source. Depending on the optical depth, hard spectra could then be pro-
duced by quasi-thermal Comptonization (Ghisellini & Celotti 1999; Stern 1999)
or the synchrotron self-Compton mechanism (Stern & Poutanen 2004; Vurm &
Poutanen 2009; see also Section 7.3 in the previous chapter).

Problems with spectral hardnesses as well as efficiency can be alleviated by
invoking a contribution from an additional thermal radiation component to the
observed spectrum (Mészáros & Rees 2000b; Daigne & Mochkovitch 2002). In-
deed, such component is a natural ingredient since at the base of the flow the
radiation is in thermal equilibrium with matter, in weakly magnetized outflows it
also initially carries most of the energy. Although in the majority of cases most
of this energy is converted to the kinetic energy of the outflow, some fraction is
always left in the radiation field and can be released at the photosphere. Such ther-
mal spectral components have been identified in several bursts (see e.g. Ghirlanda
et al. 2003; Ryde 2004, 2005). The inclusion of a photospheric component has
two significant advantages: it can accommodate the observedhard slopes below
the spectral peak, and it can alleviate the efficiency problem encountered in inter-
nal shock models. Furthermore, it can be shown that in case a significant fraction
of the flow energy is released as photospheric emission, the spectrum will peak at
∼ 1 MeV in the observer frame and is a weak function of the outflowluminosity.
If the peak of the gamma-ray spectrum is attributed to the photospheric compo-
nent, this provides a natural explanation to the observed clustering of GRB peak
energies (Preece et al. 2000).

Despite these advantages, it is obvious that the photospheric emission alone is
not capable of explaining the prompt GRB emission. The reason is that being a
blackbody, it cuts off exponentially above the peak, which is clearly not what is
observed in GRB-s whose spectra extend to energiesE ≫ Epeak. This extended
high-energy emission requires additional dissipation to take place in the flow. Ex-
amples of dissipation mechanisms considered in the literature in the context of
photospheric models include the aforementioned internal shocks (e.g. Pe’er et al.
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2006) and dissipation of magnetic energy (Giannios 2008).

An alternative mechanism of flow enery dissipation was recently proposed by
Beloborodov (2010) which does not rely on internal shocks orthe poorly under-
stood magnetic dissipation mechanisms. It was argued in Beloborodov (2003b)
that when the outflow is launched from the central compact object, it necessarily
contains a significant neutron component. If the flow has sufficiently low baryon
loading, the protons decouple from neutrons before the jet reaches its terminal
Lorentz factor (Derishev et al. 1999b). This happens in jetsthat get accelerated to
Γ ≥ 400 and leads to the formation of acompound flow: a slower neutron com-
ponent embedded in a faster proton flow. It was shown in Beloborodov (2010)
that nuclear collisions in such compound flows constitute anefficient mechanism
of dissipating the flow energy, capable of reaching a sizablefraction of the total
flow luminosity. This occurs through two main branches: (1) inelastic collisions
between neutrons and protons can result in pion production,which upon decay ul-
timately leads to the injection of high-energy electron-positron pairs with Lorentz
factorγ ∼ 300, and (2) elastic collisions heat the proton component torelativis-
tic temperatures leading to continuous Coulomb heating of the electron/positron
component, which is kept at a much lower temperature by Compton cooling. The
energy dissipated by these branches turns out to be about equal. The main advan-
tage of this mechanism lies in the fact that it relies only on well-understood colli-
sional processes, which greatly contributes to the predictive power of the model.
This is in contrast with collisionless mechanisms such as shock acceleration and
magnetic dissipation, which involve collective plasma interactions and are much
less understood.

Regardless of the dissipation mechanism, accurate modeling of the spectral
formation in the flow requires a self-consistent solution for the evolution of parti-
cle and photon distributions in the dissipation region, which can span several or-
ders of magnitude in radii from the central source. Two basicapproaches are avail-
able: Monte-Carlo methods (used in e.g. Stern & Poutanen 2004; Beloborodov
2010) in which a sample of interacting particles/photons is followed along the
flow, and kinetic treatment where a set of coupled time-dependent integro-differential
equations is solved for photon and particle distributions (used in e.g. Pe’er et al.
2006). We will take the kinetic theory approach and will calculate the emission
from both non-magnetized and magnetized neutron-loaded flows.

This chapter is organized as follows: In section 8.1 we will give a summary of
the physics of relativistic hydrodynamical outflows where the magnetic field is not
strong enough to influence the flow dynamics. The model for energy dissipation as
well as the simulation setup are described in section 8.2. Insection 8.3 we present
the results of numerical modeling of non-magnetized and magnetized flows. We
will summarize in section 8.4.
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8.1 Relativistic fireballs

When the outflow is launched from the central object, its internal energy must
strongly dominate over its rest mass energy in order to allowits acceleration to
relativistic velocities. If the magnetic field is not strongenough to influence the
dynamics of the flow, this internal energy is in the form of radiation, which is
strongly coupled to matter due to the huge optical depths involved. Matter and ra-
diation therefore behave like a single fluid, allowing the flow properties to be de-
termined from fluid-dynamical considerations (see e.g. Goodman 1986; Paczyn-
ski 1986; Piran et al. 1993). This regime extends out to the radius where the flow
becomes optically thin and radiation decouples from matter.

To lay the groundwork for our simulations we will therefore start with an
overview of the hydrodynamics of relativistic spherical outflows and derive the
scaling laws for comoving energy and number densities. Thiscan be done most
elegantly by employing the covariant tensor formalism and writing down con-
servation laws for the energy-momentum tensor that is validirrespective of our
choice of coordinate system. In what follows we assume that the magnetic field,
if present, is not strong enough to significantly influence the dynamics of the flow.

Consider a fluid element moving with a four-velocityUµ in some freely chosen
frame of reference. Its energy-momentum tensor takes the form (Weinberg 1973)

T µν = pgµν + (p + ρ) UµUν, (8.1)

wherep andρ are the pressure and total energy density (including the rest mass)
of matter and radiationin the comoving frame of the fluid element andgµν is
the metric tensor. We adopt a convention where the indices run from 0 to 3 and
0 refers to the temporal coordinate. The energy-momentum tensor satisfies the
conservation law (for proof see Weinberg 1973)

DT µν

Dxν
≡ ∂T µν

∂xν
+ Γ

µ

λν
T λν + ΓννλT

µλ = 0, (8.2)

whereD/Dxν denotes covariant differentiation with respect to the space-time co-
ordinatexν and the Christoffel symbols are defined as

Γ
µ

λν
=

1
2

gαµ
(

∂gνα
∂xλ
+
∂gλα
∂xν
− ∂gλν
∂xα

)

. (8.3)

In other words, equation (8.2) states that the covariant divergence ofT µν vanishes.
We can also write down the covariant form of the continuity equation,

D
Dxν

(nUν) =
∂

∂xν
(nUν) + Γννλ nUλ = 0, (8.4)

wheren is the comoving particle number density.
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By noting that (Weinberg 1973)

Γννλ =
1
√

g
∂

∂xλ
√

g, (8.5)

where

g ≡ −Det gµν, (8.6)

we can cast the conservation laws given by equations (8.2) and (8.4) in a simpler
form

DT µν

Dxν
=

1
√

g
∂

∂xν
(√

g T µν) + Γ
µ

λν
T λν = 0, (8.7)

D
Dxν

(nUν) =
1
√

g
∂

∂xν
(
√

g n Uν) = 0. (8.8)

Equations (8.7) and (8.8) are the fundamental equations governing the evolu-
tion of relativistic non-dissipative hydrodynamic flows and represent the conserva-
tion of energy, momentum and particle (in our case baryon) number. In this form
they are valid in any coordinate system, rectilinear or curvilinear, and as such,
are able to accommodate the effects of curved space-time and thus also General
Relativity. We, however, are interested only in special relativistic effects in flat
spacetime. The reason for employing such general formalismlies in our desire to
determine the relativistically correct scaling laws in a spherically symmetric out-
flow for which we need to write the conservation laws in a curvilinear (spherical)
coordinate system.

Using the usual transformation between the spherical and Cartesian coordi-
nates,

ct = ct,

x = r sinθ cosφ,

y = r sinθ sinφ,

z = r cosθ, (8.9)

we find the covariant metric tensor to be

gµν =
∂xα

∂x′ µ
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wherex′ µ refers to the coordinatesct, r, θ andφ, andηµν is the Minkowski tensor.
In contravariant components the metric becomes

gµν =
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0 1 0 0
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0 0 0 1/r2 sin2 θ































. (8.11)

In spherical symmetry the four-velocity of the outflow isUµ = Γ(1, β, 0, 0), where
β is the radial outflow speed in units ofc andΓ is the Lorentz factor. Using this
and the contravariant components of the metric tensor givenby (8.11), the energy-
momentum tensor (8.1) becomes

T µν =
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(8.12)

In order to write out the dynamical equations, we need to calculate the Christof-
fel symbols. The only relevant non-zero components turn outto be

Γ1
22 = −r, Γ1

33 = −r sin2 θ and Γ2
33 = − sinθ cosθ. (8.13)

As one would expect in spherical symmetry, theθ andφ (µ = 2, 3) components
of the conservation law (8.7) yield trivial results and thuscontain no information
about the dynamical evolution. The temporal and radial components give

∂

c ∂t

[

(p + ρ) Γ2
]

+
1
r2

∂

∂r

[

r2(p + ρ) Γ2β
]

− ∂p
c ∂t
= 0, (8.14)

∂

c ∂t

[

(p + ρ) Γ2β
]

+
1
r2

∂

∂r

[

r2(p + ρ) Γ2β
2
]

+
∂p
∂r
= 0, (8.15)

while the continuity equation reads

∂

c ∂t
(n Γ) +

1
r2

∂

∂r

(

r2n Γβ
)

= 0, (8.16)

where we have usedg = −Det gµν = r4 sin2 θ.
To make further progress, we make the assumption that the flowis highly

relativistic and each fluid element propagates (nearly) along characteristic world
lines described byct − r = const. Therefore it is natural to make a change of
variablesr, t → r, s = ct − r (Piran et al. 1993). The derivatives with respect toct
andr become

∂

c ∂t
→ ∂

∂s
and

∂

∂r
→ ∂

∂r
− ∂

∂s
, (8.17)
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where now ther derivative has to be taken at constants (along the characteristic).
The conservation laws (8.14)-(8.16) take the form

1
r2

∂

∂r

[

r2(p + ρ) Γ2β
]

= − ∂
∂s

[

(p + ρ)
Γ

Γ + Γβ

]

+
∂p
∂s
, (8.18)

1
r2

∂

∂r

[

r2(p + ρ) Γ2β
2
]

= − ∂
∂s













(p + ρ)
Γβ

Γ + Γβ













+
∂p
∂s
− ∂p
∂r
, (8.19)

1
r2

∂

∂r

(

r2n Γβ
)

= − ∂
∂s

(

n

Γ + Γβ

)

. (8.20)

If Γ ≫ 1 and the flow is not strongly variable, the terms under the differentials on
the left hand sides of the equations (8.18)–(8.20) are much larger than those on
the right-hand sides. Therefore we can immediately see thatthe following scalings
hold for each fluid element along its trajectory:

r2n Γ = constant and r2(p + ρ) Γ2 = constant, (8.21)

corresponding to number and momentum conservation, respectively.
Under the assumptions we have made, equations (8.18) and (8.19) seem re-

dundant. To see that this is not true and that equations (8.18)–(8.20) yield another
scaling law for internal energy, let us go back to the original conservation law
(8.2) for the energy-momentum tensor (8.1) and contract it with Uµ:

Uµ

DT µν

Dxν
= Uν Dp

Dxν
− D

Dxν
[

Uν(p + ρ)
]

+ (p + ρ) UµU
ν DUµ

Dxν
= 0, (8.22)

where we have used the fact that the covariant divergence of the metric tensor
vanishes and thatUµUµ = −1. The last term in equation (8.22) vanishes owing to
the fact that

Uµ

DUµ

Dxν
=

1
2

D
Dxν

(

UµU
µ
)

= 0. (8.23)

At this point it is convenient to separate the contributionsto p+ρ from the rest
mass of the matter and the internal energy:

p + ρ = p + ρkin + mpc2n, (8.24)

whereρkin refers to the sum of the comoving internal kinetic energy densities of
matter and radiation, and the bulk of the rest energy is assumed to be carried by
baryons. Inserting (8.24) into equation (8.22) and using the continuity equation
(8.8), we immediately see that the term containingn vanishes and we get

Uµ

DT µν

Dxν
= Uν ∂p

∂xν
− 1

r2 sinθ
∂

∂xν
[

r2 sinθ Uν(p + ρkin)
]

= 0, (8.25)

wherexµ now refer toct, r, θ andφ and we have used equations (8.5) and (8.6) to
explicitly write the covariant divergence in spherical coordinates.
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To go further we have to specify the equation of state of the fluid. In the
typical GRB outflows that we are interested in, by far most of the internal energy
is carried by radiation (this statement can be checked a posteriori, i.e. after we
have determined all the scaling laws). We therefore havep = ρkin/3 and equation
(8.25) becomes

Uν ∂ρkin

∂xν
+

4
3
ρkin

1
r2

∂

∂xν
(

r2 Uν
)

= 0, (8.26)

which can also be written as

∂

∂xν
(

r2 ρ
3/4
kin Uν

)

= 0. (8.27)

Note that by cancelling sinθ in equation (8.26) we have already implicitly as-
sumed that the poloidal component ofUµ vanishes. Making the transformation
r, ct → r, s = ct − r, the energy equation (8.27) for a radial outflow becomes
(Piran et al. 1993)

1
r2

∂
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r2 ρ
3/4
kin Γβ

)

= − ∂
∂s















ρ
3/4
kin

Γ + Γβ















. (8.28)

As before, we argue that the term under the differential is significantly larger on
the left-hand side than that on the right-hand side forΓ ≫ 1, and we find that the
following scaling holds for the internal energy:

r2 ρ
3/4
kin Γ = constant. (8.29)

Looking at the scalings (8.21) and (8.29) we can identify twodistinct regimes.
If the comoving radiation energy density exceeds the rest energy density of matter,
the flow is in the radiation-dominated regime and the scalings become

Γ ∝ r, n ∝ r−3, ρkin ∝ r−4, (8.30)

while in the opposite case we are in the matter-dominated phase and the scalings
read

Γ = const, n ∝ r−2, ρkin ∝ r−8/3. (8.31)

We will use these scaling laws to determine the initial conditions at the start of
our simulations, as well as for determining the additional terms in the kinetic
equations that need to be included to account for the energy losses due to adiabatic
cooling and the decrease of comoving densities in a diverging outflow.
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8.2 Physical model and simulation setup

The simulations are set up using the following simple picture: a neutron-loaded
fireball is launched from the central source and is accelerated to ultrarelativistic
velocities at the expense of its internal energy. As the flow accelerates and ex-
pands, its rest mass energy eventually becomes comparable to and then exceeds
the internal energy of the fireball, the flow enters a matter-dominated regime and
thereafter coasts with a constant Lorentz factorΓ. At some radiusrn (to be de-
termined below) the proton and neutron components of the flowdecouple from
each other, allowing a compound flow to develop (Beloborodov2010): a slower
neutron component inside a faster proton flow. The kinetic energy of the relative
motion of the two flows can then be dissipated through elasticand inelastic nuclear
collisions. The dissipation is assumed to begin atrn, at which point the simula-
tion is started. The simulation is run in the frame comoving with the outflow. We
choose and follow a ’representative’ element of the flow, self-consistently solving
the time-dependent kinetic equations for particles and photons inside this element
as it propagates outward along its characteristic world-line. The included physi-
cal processes are Compton scattering, cyclo-synchrotron emission and absorption,
photon-photon pair production and annihilation and Coulomb collisions. No ap-
proximations have been made regarding the relevant rates and cross-sections.

Since we are working with a one-zone kinetic code, the treatment is essen-
tially local. Such simplified approach can be justified by noting that the collisional
mechanism described above operates relatively close to thecentral source, in the
rangeRdiss ∼ 1011 – 1013 cm, while for typical burst durations∆t the radiation
remains embedded in the flow out to radiic∆t Γ2 ∼ 1016 cm. This implies that
the flow and radiation are essentially moving together throughout the dissipation
episode, therefore radius and time can be viewed as equivalent independent vari-
ables for describing the problem. It also means that portions of the flow emitted
earlier are causally disconnected from those emitted later. Therefore radiative
transfer can be regarded as the evolution of the local photonfield in the comoving
time. Other elements of the flow are expected to undergo the same evolution as a
function of their own comoving lifetimes.

The assumption of isotropy of the material and photon fields in the comoving
frame (inherent in one-zone treatment) is strictly justified only as long as the flow
remains optically thick. After transition to the opticallythin regime, the radiation
gradually becomes collimated along the radial direction. This is a geometric effect
associated with the fact that most of the photons originate from close to the pho-
tosphere, which subtends a decreasing angle when viewed from increasing radii.
Although this presents a problem to our simulations, we generally do not have to
follow the flow to very large radii, owing to the fact that the emerging spectrum is
shaped predominantly close to the photosphere where the deviation from isotropy
in the comoving frame is not large.

To set up the simulations we will proceed as follows:
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(1) Since we are simulating diverging outflows, the code needs to be able to han-
dle expansion related effects such as adiabatic cooling. The additional terms that
have to be included in the kinetic equations will be determined in the following
subsection.
(2) We will then determine the rates at which energy is dissipated in the flow
through heating and injection, using a physical model detailed in Beloborodov
(2010).
(3) The initial conditions at the start of the simulations are determined in the
framework of the fireball model described above, using the scaling laws (8.30)
and (8.31).
(4) Finally, we will describe a simple method to account for the fact that at any
given moment the observer will see a superposition of emission originating from
different parts of the flow that propagate at various angles to theline of sight,
resulting in different Doppler shifts and opacities along different rays.

8.2.1 Implementation of expansion effects

The fluid dynamical treatment described in section (8.1) deals with integrated
quantities such as energy density, energy flux and pressure.Furthermore, it as-
sumes that all the components making up the flow are strongly coupled to each
other so that matter and radiation behave like a single fluid in local thermody-
namical equilibrium. In contrast, we are interested in thedistributions of particles
and photons in energy space, which do not need to take the shape of equilibrium
distributions (i.e. Maxwellian and Planck/Bose-Einstein). Also, the spectrum that
the observer will see is predominantly shaped close to the photosphere (τ ∼ 1),
where, by definition, matter and radiation start to decouplefrom each other. In
fact, energy dissipation such as the collisional heating weare discussing here can
force matter and radiation out equilibrium already at much higher optical depths
than unity. Therefore, the question we need to answer is how to implement the
effects like adiabatic losses and dilution of matter and photonnumber densities
obtained from general fluid-dynamical considerations in our kinetic treatment, in
a way that would recover the correct scalings for the integrated quantities as well
as account for the decoupling of radiation from matter near the photosphere. In
what follows we will assume that the flow has reached a matter-dominated stage
by the time we start our simulations, so thatΓ = const.

Let us first consider adiabatic losses. Since we are dealing with arbitrary en-
ergy distributions we need to determine the average energy loss rate of particles
and photonsof each particular energy, rather than that of the whole distribution.
To do this let’s consider a monoenergetic population ofNe electrons with energy
γ (in units ofmec2) inside a volumeV. The total kinetic energy of the electrons is
U = Ne (γ − 1), while the pressure is

p =
1
3

Ne

V
γβ2 (8.32)
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The first law of thermodynamicsdU = −p dV reads

Ne dγ = −1
3

Ne

V
γβ2 dV, (8.33)

or

dγ = −1
3
γβ2 d ln V. (8.34)

Depending on whether the expansion is in 2D or 3D we haveV ∝ l2 or V ∝ l3,
respectively, wherel is a linear dimension. If the expansion proceeds at a rate
dl/dt′, wheret′ is the comoving time, we can define a characteristic expansion
timescale

tadiab≡
l

dl/dt′
=

(

d ln l
dt′

)−1

. (8.35)

Dividing equation (8.34) bydt′ and using the definition (8.35), we find

γ̇2D = −
2
3
γβ2

tadiab
and γ̇3D = −

γβ2

tadiab
(8.36)

for expansion into 2 or 3 dimensions, respectively. Note that the scaling laws
(8.31) imply that the expansion in matter-dominated regimeproceeds in two di-
mensions (sincen ∝ r−2), so we will appropriately use the cooling rate ˙γ2D in our
simulations.

Similar reasoning holds for the photon field, provided that the source is opti-
cally thick and the photon gas thus behaves like a fluid. Instead of equation (8.32)
we now have

p =
1
3

Ne

V
x, (8.37)

wherex is the photon energy inmec2 units. This leads to cooling rates

ẋ2D = −
2
3

x
tadiab

and ẋ3D = −
x

tadiab
. (8.38)

In the spherical outflow the comoving linear dimension scales asl ∝ r, while in
matter-dominated regimer ∝ t′ (sinceΓ = const.) and we can write for adiabatic
cooling timescale

tadiab=

(

d ln r
dt′

)−1

=

(

d ln t′

dt′

)−1

= t′, (8.39)

that is, the adiabatic cooling timescale is equal to the comoving lifetime of the
shell element.



138 CHAPTER 8. GRBs FROM NEUTRON-LOADED FLOWS

Another effect in the expanding flow that we need to account for is the decrease
of particle and photon densities over time. As the operatingphysical processes can
create and destroy both photons and particles one cannot just prescribe the depen-
dence of the number densities with radius (i.e.n ∝ r−2). Instead one can introduce
arate at which particles are lost from a unit volume, which we parametrize by “es-
cape” timescale. This is done simply by differentiating the relationn ∝ t′ −2 (2D
expansion) to give

dn
dt′
= −2n

t′
≡ − n

tesc
, (8.40)

where we have definedtesc≡ t′/2. Heren denotes the comoving number density
of either particles or photons. For 3D expansion we havetesc= t′/3.

As a consistency check, we note here that if we write the evolution equation
of pure adiabatic expansion (say, for photons)

dn(x)
dt′

= − ∂
∂x

[ ẋ n(x)] − n
tesc

, (8.41)

multiply it by particle energy and integrate over all energies, we will recover the
proper adiabatic scaling laws given by equations (8.30) and(8.31) for 3D and 2D
expansion,ρkin ≈ urad ∝ r−4 andurad ∝ r−8/3, appropriate for radiation and matter
dominated phases, respectively.

The remaining question concerns the criterion to determinewhether the pho-
ton field is coupled to the electron gas strongly enough to participate in adiabatic
cooling. The simplest way of doing this is to consider the number of interactions
a photon undergoes duringtadiab, given by

τ⋆(x) = cα tadiab, (8.42)

whereα(x) is the (energy-dependent) extinction coefficient. We then assume that
if τ⋆ > 1, i.e. a typical photon interacts several times during the typical expansion
timescale, the radiation field behaves like a fluid and one hasto include cooling
rate (8.38) in the kinetic equations. Conversely, ifτ⋆ < 1, photons are not assumed
to be coupled to matter and do not cool upon expansion. A simple prescription to
incorporate both regimes in the cooling rate would be

ẋ2D = −
2
3

x
tadiab

τ⋆(x)
1+ τ⋆(x)

. (8.43)

8.2.2 Energy dissipation in neutron-loaded flows

We will now give a summary of the mechanisms by which energy can be dis-
sipated in a neutron-loaded flow, following a model by Beloborodov (2010). It
was shown in Paczynski (1986) that releasing∼ 1052 ergs of energy into a small
volume within a couple of seconds leads to a temperature of several MeV at the
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central source. At such temperatures (kT & (mn−mp)c2 ≈ 1.3 MeV) neutrons and
protons can be converted to each other viae± capture reactions

e− + p→ n + ν and e+ + n→ p + ν, (8.44)

leading to the establishment of a nuclear statistical equilibrium between the two
species (Beloborodov 2003b). The flow therefore inevitablycarries a significant
neutron component. As has been discussed in several works (Derishev et al.
1999a,b; Pruet & Dalal 2002; Beloborodov 2003a), this can have profound ob-
servable effects on both prompt and afterglow phases of GRB emission. Here we
are focusing on the former, and will see that a significant fraction of the bulk en-
ergy can be dissipated in a neutron-loaded flow at the stages when the outflow is
still collisional.

The obvious main requirement for collisional dissipation to occur is a non-zero
relative velocity between the proton and neutron components of the flow. This can
be realized in two ways (Beloborodov 2010): First, internalshocks that develop
if the flow is variable do not involve the neutron component, which can penetrate
through the shocked gas into the region propagating with a different Lorentz factor
(Mészáros & Rees 2000a). Secondly, it was shown in Derishev et al. (1999b)
that protons and neutrons in the outflow can decouple before the flow reaches
its terminal Lorentz factor if the latter is sufficiently high. Both cases lead to
volume dissipation of energy by nuclear collisions in the interpenetrating proton
and neutron flows. To keep our model simple and avoid dealing with simulating
flows that are still accelerating, we will assume that the decoupling of proton and
neutron flows takes place in the matter-dominated phase. We will also not concern
ourselves with the details of the development of compound flows and will simply
assume that such flow has already been set up at some radiusrn where we start the
simulation.

It is natural to expect most of the collisional dissipation to take place near the
radius where the neutron flow becomes ”optically thin” to protons, i.e. τn . 1,
where

τn =

∫ ∞

r

nnσdr′

Γn
=

Lnσ

4πmnc3rΓ3
n
. (8.45)

Here we have definedΓn and nn as the Lorentz factor and comoving number
density of the neutron component of the flow, as well as its kinetic luminosity
Ln = 4πmnc3r2Γ2

nnn. The quantityσ ∼ 3× 10−26 cm2 is the effective cross-section
for nuclear collisions. At smaller radii (higher optical depths) the neutron and
proton flows are still coupled to each other, whereas at larger radii nuclear colli-
sions between neutrons and protons become too infrequent todissipate significant
amount of energy. The number of collisions per unit time between radiir1 andr2

is given by

4π
∫ r2

r1

ṅcoll r2dr ≈
∫ τn(r2)

τn(r1)

1
2

Ṅpdτn, (8.46)
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where we have introduced the Lorentz invariant collision rate

ṅcoll ≡
dNcoll

dVdt
= cσnpnnΓrel, (8.47)

whereΓrel ≈ Γ/2Γn is the relative Lorentz factor between the proton and neu-
tron components of the flow. In the last equality in (8.46) we have defined the
proton number fluxṄp = 4πc r2Γnp and used equation (8.45). Since dissipated en-
ergy is proportional to the number of collisions andṄp is approximately constant,
equation (8.46) confirms the expected result that bulk of thedissipation occurs in
regions of the highestτn (lowestr) that permits the compound flow to exist, i.e.
τn ∼ 1. Therefore we will choose

rn =
Lnσ

4πmnc3Γ3
n

(8.48)

as the starting radius of our simulations.
A collisional encounter between a neutron and a proton can beeither elastic

or inelastic. Upon an elastic collision the energy gained bya proton is quickly
shared with the rest of the flow by Coulomb collisions with other protons. As a
result, the proton flow is heated to mildly relativistic temperatures. This thermal
energy is then continuously transferred to the lepton component by Coulomb in-
teractions and thereafter to the radiation field by inverse-Compton scattering. The
corresponding (volume) dissipation rate in the frame comoving with the proton
flow is

Q̇ep =

√

2
π

lnΛ
σT mec3 n±npΘp

(γ̂ − 1)(Θe + Θp)3/2
, (8.49)

wheren± is the number density of positrons/electrons,Θp = kTp/mpc2, Θe =

kTe/mec2, lnΛ is the Coulomb logarithm and ˆγ if the adiabatic index of the (pre-
sumably thermal) proton gas.

In order to assess the amount of energy that is dissipated by Coulomb heating
it is more instructive to rewrite equation (8.49) in terms ofdissipated energy per
baryon (in units ofmpc2) over one dynamical timescaletdyn = r/cΓ

1
npmpc2

rQ̇ep

cΓ
=

√

2
π

lnΛ
me

mp

Θp τT

(γ̂ − 1)(Θe + Θp)3/2
, (8.50)

whereτT = n±σTr/Γ. Plugging in the typical valuesΘp ∼ 1, lnΛ ≈ 15, γ̂ ≈ 1.4−
1.5 and assumingΘe≪ Θp due to strong Compton cooling of electrons/positrons,
we find

1
npmpc2

rQ̇ep

cΓ
≈ 0.015τT. (8.51)
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Equation (8.51) tells us the fraction of the flow energy that is dissipated over the
timescale of expansion fromr to 2r. SinceτT ∝ n±r ∝ r−1, this once again
confirms that most of the collisional heating takes place at small radii.

It was shown by Beloborodov (2010) that shortly after the dissipation starts,
the Thomson opacity of the flow is dominated by electrons and positrons gener-
ated by non-thermal pair cascades (see below) in pair creation-annihilation bal-
ance, rather than by the electrons associated with protons.The typical optical
depth atrn is about 20. Using this in equation (8.51) we can see that a significant
fraction of the kinetic energy of the flow can be dissipated bycollisional heat-
ing. One has to keep in mind, however, that the energy dissipated while the flow
is still optically thick tends to be converted back to the bulk motion of the flow
by adiabatic cooling. To obtain the actual energy in the radiation field at the point
when the photons decouple from the flow one has to write the equation accounting
for heating as well as adiabatic losses and integrate it fromrn to the photospheric
radiusr⋆.

About half of the encounters between protons and neutrons are inelastic (Am-
sler et al. 2008). In such case the proton and neutron are converted to mildly rela-
tivistic pionsπ+, π− andπ0, which promptly decay:π+ → µ+ + νµ, π− → µ− + νµ
andπ0 → γ + γ. The muons, in turn, decay throughµ+ → e+ + νe + νµ and
µ− → e− + νe + νµ. Altogether, about half of the energy of the inelastic proton-
neutron collision is carried away by neutrinos. The other half is converted to sev-
eral relativistic electrons and positrons with Lorentz factorsγ0 ∼ mπ/me ≈ 300.
Thus, taking into account both elastic and inelastic collisions, on average about
1/4 of the collision energyΓrelmpc2 is given to the injectede±. The rate of dissi-
pation is therefore

Q̇inj =
1
4
Γrelmpc2ṅcoll, (8.52)

whereṅcoll is given by equation (8.47), while the fraction of the flow energy dissi-
pated over one dynamical time becomes

1
npmpc2

rQ̇inj

cΓ
=

1
16
Γ

Γn
τn, (8.53)

whereτn = rn/r. Equation (8.53) confirms what one would expect intuitively: the
rate of energy injection in non-thermal pairs increases with τn (larger number of
collisions per proton) andΓ/Γn (higher relative Lorentz factor between neutrons
and protons, i.e. higher collision energy). The non-thermal energy injection rate
exhibits the samer−1 dependence on radius as the thermal heating rate (8.51),
making their ratio fairly constant along the flow.

8.2.3 Initial conditions

In order to use the hydrodynamic scaling laws for determining the initial condi-
tions at the start of simulations, we must first determine theconstants of motion
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on the right-hand sides of equations (8.21) and (8.29), i.e.we must findC1, C2,
C3 in

r2n Γ = C1, r2

(

4
3
ρkin + mpc2n

)

Γ2 = C2 and r8/3 ρkin Γ
4/3 = C3. (8.54)

The first two are obtained by noticing that they are proportional to the baryon
number and total energy fluxes of the flow, respectively. Defining Ṅ andL as the
total (spherical equivalent) number flux and luminosity of the flow and noting that
at large radiimpc2n ≫ ρkin, we have

C1 =
Ṅ

4πc
and C2 =

L
4πc

. (8.55)

For determiningC3 we also need to specify the initial sizer0 of the fireball.
Assuming thatmpc2n ≪ ρkin andΓ ∼ 1 at r = r0, we find from the second and
third equations in (8.54)

C3 =
3Lr2/3

0

16πc
. (8.56)

Note thatC1 can equivalently be expressed in terms of the so-called baryon load-
ing of the flow,η = L/mpc2Ṅ , whereby the scaling laws become

r2n Γ =
L

4πmpc3η
, r2

(

4
3
ρkin + mpc2n

)

Γ2 =
L

4πc
,

r8/3 ρkin Γ
4/3 =

3Lr2/3
0

16πc
. (8.57)

The evolution of the flow can be summarized as follows: a radiation-dominated
fireball of initial dimensionr0 accelerates asΓ(r) = r/r0 until the radiation energy
density of the flow becomes comparable to rest energy density. This occurs at
the so-called saturation radiusrs ≈ ηr0, whereΓ ≈ η/2. The expansion at larger
radii proceeds in a matter dominated coasting phase with a constant Lorentz factor
Γ = η, However, bulk of theinternal energy at this stage is still carried by radia-
tion, so thatρkin ≈ urad. The whole history of the fireball evolution is determined
by just three parameters: luminosityL, baryon loadingη and radiusr0 at the base
of the flow.

The conditions at the start of the simulations (r = rn) can now be simply read
from equations (8.57). The required quantities are the (comoving) proton number
density, radiation energy density as well as radiation temperature. Assuming that
the proton and neutron flows decouple atrn > rs, the proton number density atrn

is 1

n =
L

4πmpc3r2
nη

2
. (8.58)

1Here we have assumed that the energy carried by protons significantly exceeds the energy
carried by neutrons.
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The radiation energy density and temperature can be writtenas

urad(rn) = urad,s

(

rn

rs

)−8/3

, θ(rn) = θs

(

rn

rs

)−2/3

, (8.59)

where

urad,s ≈
3L

16πcr2
sη

2
, and θs =

kTs

mec2
≈ k

mec2

(

3L
16πac r2

sη
2

)1/4

(8.60)

are the radiation energy density and temperature at the saturation radius (a is the
radiation density constant).

Note that if the flow becomes optically thin beforern, the scaling laws (8.59)
only hold out to the radius where the optically thick/thin transition takes place.
After that the scalings becomeurad ∝ r−2 andθ = const.

We are now in a position to verify our earlier claim that most of the internal
energy of the flow is carried by radiation. Assuming a common temperature,
we simply need to show that the number of photons far exceeds the number of
protons and their associated electrons. First note that thephoton number density is
nph = urad/3kT ∝ u3/4

rad, which, by virtue of (8.29), confirms the well-known result
that the total number of photons (in our case, the total number flux) is a conserved
quantity in adiabatic cooling. This statement holds regardless of whether the flow
is in radiation- or matter-dominated regime. From the first and third equations in
(8.57) we then get

nph

n
≈

a1/4 u3/4
rad

3kn
≈ 2× 104

r1/2
0,7 η2

L1/4
52

, (8.61)

where we have used the notationA = 10xAx (in cgs units). Equation (8.61) con-
firms that for any plausible GRB parameters the internal energy of the flow is
indeed dominated by radiation and we are thus justified in using the equation of
statep = ρkin/3 in section 8.1.

We should mention here that the above reasoning does not holdat the very
early stages of the expansion when the lepton component is dominated by electron-
positron pairs, which can carry a significant fraction of theinternal energy if the
comoving temperature is not much below 1 MeV (Paczynski 1986). However,
employing the relativistic equation of state in section 8.1is still justified in this
case since the pairs are relativistic (albeit marginally) at such temperatures.

8.2.4 Calculation of the observed spectrum

As the simulation is run, we obtain the history of comoving photon and pair dis-
tributions on a characteristic world linect − r = const. In a steady flow (which
we are considering here) all such world lines are equivalentand we simply get
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the distributions as a function of distancer from the central source. To find the
spectrum seen by the observer, one could then choose some larger whereτ ≪ 1
and simply Lorentz transform the comoving radiation field atthis radius into the
external frame, assuming that no further spectral evolution takes place at larger
radii. However, there are some problems with this simple approach. First, the
radius where the flow becomes optically thin is not a well-defined quantity, since
the optical depth is a function of viewing angle. Second, theone-zone treatment
becomes less accurate when the flow is optically thin. The reason for this is that
our simulations deal with only local (comoving) distributions and neglect the fact
that each point in the flow is in causal contact with other parts of the flow that
have different (relative) Doppler factors, therefore the photons arriving at a given
point at a given time have undergone different Doppler shifts. While our local
treatment is still correct energetically, it misses the effect of such superposition
of relative Doppler shifts on the spectral shape. A related problem is that the ra-
diation field becomes increasingly beamed in the radial direction as the optical
depth decreases, and is no longer isotropic in the frame comoving with the flow.
This is a geometric effect caused by the fact that bulk of the radiation originates
from close to the photosphere (τ ≈ 1), which subtends an increasingly small angle
when viewed fromr ≫ r⋆.

To overcome these problems we propose an alternative methodof calculating
the observed spectrum that takes into account the effects arising from the non-
locality of the radiative transfer problem. The idea is simple: having found the
photon and particle distributions at all radii from the simulation, we can use them
to calculate the emissivities and extinction coefficients for all processes every-
where in the flow. The emerging spectrum can then be found by simply employ-
ing the formal solution to the radiative transfer equation in the external frame.
This way the distributions obtained from the simulation areregarded as a 0-th
order approximation, while using the formal solution provides the next order in
accuracy.

During a simulation the code outputs the comoving emissivities j′ and absorp-
tion coefficientsκ′ as a function of radiusr, both of which are isotropic in the flow
frame. The corresponding quantitiesj andκ in the external frame are found using
the Lorentz invariants

j
ν2
= invariant and κν = invariant, (8.62)

whereν is the photon frequency. Defining the Doppler factor as

D = [Γ(1− βµ)]−1, (8.63)

whereµ is the angle between the radial direction and the line of sight, we find

j(r, ν, µ) = j′(r, ν/D) D2 and κ(r, ν, µ) =
κ′(r, ν/D)
D , (8.64)
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where we have used the relationν = ν′D between the frequency in the external
and the comoving frames.

Let’s now use the quantities defined by equation (8.64) to write the formal so-
lution of the radiative transfer equation in cylindrical coordinates, with thez-axis
pointing towards the observer. The intensity along a ray with an impact parameter
h propagating along thez-axis to the distant observer can be written as

I(z→ ∞, ν) = I′(rn, ν/Dn) D3
n e−τ(zn ,ν) +

∫ ∞

zn

e−τ(z,ν) j′(r, ν/D) D2 dz, (8.65)

wherer =
√

z2 + h2, Dn = D(rn), zn =
√

r2
n − h2 and we have usedI(ν)/ν3 =

invariant. The comoving intensityI′ at the starting radiusrn is obtained from
fluid-dynamical considerations and is given by

I′(rn, ν
′) = B[ν′, θ(rn)], (8.66)

whereB is the blackbody intensity andθ(rn) is given by equation (8.59). The
optical depth along the ray fromz to infinity (observer) is

τ(z, ν) =
∫ ∞

z

κ′(r, ν/D)
D dz. (8.67)

Note that the Doppler factorD in equations (8.65) and (8.67) is a function ofz
throughµ = z/

√
z2 + h2.

Once the intensity is known for all impact parametersh, the flux at the observer
can be calculated simply as

F(ν) =
2π
d2

∫ ∞

0
I(z→ ∞, ν) h dh. (8.68)

Compared to simple boosting of the comoving spectrum into the external
frame, the described method of calculating the observed spectrum has the fol-
lowing advantages:
(1) It automatically includes contributions from different parts of the flow moving
at different angles to the line of sight, resulting in different Doppler boosts from
the local comoving frames.
(2) It correctly accounts for the dependence of the photospheric radius on the
viewing angle, which varies within a factor of∼ 2 inside the cone of opening
angle 1/Γ where bulk of the emission originates from.

In this form the preceding calculation assumes a steady outflow. However,
the method can be extended also to variable flows. In this casethe emission and
absorption coefficients become functions of time as well as the distance from the
central source and one needs to employ the formal solution for time-dependent
radiative transfer problem. The characteristic world lines ct − r = constant are
obviously no longer equivalent and several simulation runsare required to obtain
j′ andκ′ on a two-dimensional grid (t, r).
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8.3 Numerical results

8.3.1 Non-magnetized flows

Let us now consider some particular realizations of gamma-ray bursts outflows,
using the framework described in the preceding sections. Starting with non-
magnetized flows we will describe the evolution of particle and photon fields
inside the flow as well as the formation of the observed spectrum, paying particu-
lar attention to high-energy emission. To demonstrate the viability of the kinetic
theory approach we have adopted here to model GRB emission and allow direct
comparison with Monte-Carlo simulations by Beloborodov (2010), we have cho-
sen to study a similar region in parameter space.

For our simulations we choose the following fiducial model: proton flow lu-
minosity L = 1052 erg s−1, neutron flow luminosityLn = 1051 erg s−1, Lorentz
factor of the proton flow (baryon loading)Γ = 600, Lorentz factor of the neutron
flow Γn = 100, initial radius of the flowr0 = 107 cm. The starting radius of the
simulations is determined from equation (8.48), which gives rn = 5 × 1010 cm.
The comoving radiation temperature is found from equation (8.59) to be about
0.5 keV.

The formation of the spectrum within the flow as we follow a characteristic
ct − r = constant fromrn to the photosphere can be summarized as follows: After
the dissipation starts, most of the energy is initially delivered in the form of high-
energy pairs, which can be seen by comparing equations (8.51) and (8.53) and
noting that the initial Thomson optical depth is of the orderof unity. As the pairs
cool, they upscatter photons from the thermal pool to start forming a tail to the
Planck distribution with a slope characteristic of a cooling spectrum (photon index
α = 1.5). Due to the low blackbody temperature, the source is initially optically
thin to pair production for photons with (comoving) energies belowx′ = E/mec2 ≈
100. However, this soon changes as more and more photons are upscattered from
the thermal distribution. The source becomes optically thick to pair production
and a cascade develops. The pairs produced by the cascade will quickly (within
about 1/2 of the dynamical time) increase the Thomson optical depth to about 20.
By that time the continuous heating rate, being proportional to τT, has increased
to deliver about the same power as the non-thermal injection. As a result of the
pair cascade, the high-energy slope of the pair distribution becomes steeper than
that of the cooling distribution (N(γ) ∝ γ−2).The Compton upscattered spectrum
will soften accordingly.2

Due to the high compactnesses involved, the pair cascade takes place in the
saturated regime, i.e. all high-energy upscattered photons will produce further
pairs. An important parameter characterizing the cascade can be defined aszT =

2We must stress here that the preceding description merely illustrates the history of spectral
formation as we follow an element of the flow along a characteristic world line, and isnot the
spectral evolution seen by the observer.
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(2/3)γ0x′0 (Svensson 1987), whereγ0 is the injection energy of primary non-
thermal pairs andx′0 is the typical energy of soft photons. The quantityzT deter-
mines whether the cascade takes place in the Thomson or Klein-Nishina regime
(zT ≤ 1 or> 1, respectively), also how many generations of secondary pairs are
created etc. In our casex′0 ∼ 1/200 (comoving) andγ0 = 300, sozT ∼ 1. Most of
the cascade is in Thomson regime (only scatterings on the highest energy primary
pairs take place in the Klein-Nishina regime) and there are several generations of
secondary pairs and photons, leading to a smooth overall spectrum. If we consider
the non-thermal cascade alone, it can be classified as being of type II according to
Svensson (1987), i.e. partly non-linear. In this case the soft target photons for pair
production are provided by the cascade itself, while pair cooling is still dominated
by the original pool of soft photons. Saturated type II cascade lends itself to an
analytic solution and is determined by just two parameters:zT and the minimum
photon energyx′min where saturated pair production takes place. Most importantly,
such cascade is independent of the soft photon luminosity (Zdziarski & Lightman
1985), whereas pair-production opacity enters only through the parameterx′min.
However, if we include thermal heating, the preceding classification is no longer
strictly valid. The reason is that it introduces an additional non-linearity to the
problem through Comptonizing photons into the range where they can contribute
to the pair-production opacity, as well as producing additional cooling for the
high-energy pairs. At the same time, the power in thermal heating depends on the
optical depth of thermalized pairs, which is determined by the pair-cascade itself.
Despite this, the robustness of saturated cascades still allows us to make reason-
able estimates using the analytic solution together with the appropriate values for
x′0 andx′min.

In Figure 8.1 we plot the observed spectrum for the fiducial model. It bears
a strong resemblance with the Band-type spectrum usually seen in GRB-s, con-
sisting of two smoothly joined power-law segments and peaking close to MeV.
The spectrum below the peak is made up of blackbody photons advected from the
central source and released at the photosphere. However, the photon index devi-
ates appreciably from the Rayleigh-Jeans slope. This can beattributed to the fact
that the observed spectrum is a superposition of emission from different parts of
the photosphere having different Doppler factors, leading to softening of the low-
energy power-law. Just above the peak the dominant contribution to the spectrum
comes from thermal Comptonization by Coulomb-heated pairs. The Comptoniza-
tion takes place in unsaturated regime, leading to a power-law spectral segment
starting from the thermal peak. The thermally Comptonized spectrum cuts off
above a few 10 MeV, corresponding to the electron temperature of around 15 keV
in the comoving frame. Above this energy, inverse-Compton scattering on non-
thermal pairs starts to contribute. Note, however, that there is no easily discernible
break between the two components. One of the reasons for thatis the fact that
comparable amount of energy is dissipated by collisional heating and high-energy
pair injection (see equations (8.51) and (8.53)). Also, most of the photons in this
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Figure 8.1: Spectrum from a collisionally heated outflow. Model parameters:
proton flow luminosityL = 1052 erg/s, neutron flow luminosityLn = 1051 erg/s,
Lorentz factor of the proton flowΓ = 600, Lorentz factor of the neutron flow
Γn = 100. The dashed straight lines correspond to photon indices−0.2, 2.5 and
3.5.

energy range undergo several scattering events on cold pairs before being able to
escape, losing a significant fraction of their energy in the process. This Compton
downscattering has an overall smoothing effect on the spectrum. A distinct feature
of the model is a broad annihilation line on top of the otherwise smooth spectrum,
due to cooled-down electron-positron pairs. Overall, the spectrum in Figure 8.1
is remarkably consistent with the spectrum obtained by Beloborodov (2010) for
similar parameters using Monte-Carlo methods.

As discussed before, the spectrum at the highest energies (above GeV in the
external frame) is shaped by saturated pair cascades. The parameterzT is close
to unity, for which the analytic solution predicts an almostflat injection spectrum
x′ jpa(x′) of cascade photons in terms of injected energy per logarithmic photon
energy interval. Thex′2n′(x′) photon distribution in the optically thick regime is
simply proportional tox′ jpa(x′)/κpp(x′). Heren′(x′) is the comoving photon num-
ber density per dimensionless energy interval (the primes signify that we are deal-
ing with comoving frame quantities). The absorption coefficient κpp(x′) ∝ x′α−1,
whereα is the photon index of the target photon population (see below). This
leads tox′2n′(x′) ∝ x′−α+1, which is steeper by unity compared to the target spec-
trum atx′ < mec2. This steepening can be seen starting atx ∼ 3000 in Figure 8.1,
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which corresponds tox′ ≡ x′min ∼ 5 in the comoving frame. Below this energy
the saturated pair-cascade is quenched, since the timescale for Compton down-
scattering becomes shorter than that forγγ absorption. Downscattering flattens
the spectrum belowx′min and leads to a smooth break connecting the high- and
low-energy power-laws.

In view of the relatively small distances of the dissipationregion from the
central source, it seems rather remarkable that significantGeV emission is able to
emerge from the flow. The pair-production opacity constraints on the flow Lorentz
factor and the dissipation radius have been discussed in several works (e.g. Woods
& Loeb 1995; Baring & Harding 1997; Lithwick & Sari 2001). Recently, the ob-
served GeV emission together with the typical variability timescale in different
sources like e.g. GRB 080916C and GRB 090902B has been used toplace strin-
gent lower limits onΓ (Abdo et al. 2009b,a). We argue here that such argument
is strictly valid only if the dissipation process ceases while the flow is still opti-
cally thick to pair production, in which case high-energy emission is quenched
exponentially (F ∝ F0 exp(−τγγ)). In the model considered here the dissipation
operates over a range of radii, including those whereτγγ < 1. In such case we
can see the photons that are produced within unit optical depth inside the source,
which merely leads to a steepening of the spectrum at higher energies instead of a
cut-off. The variability timescales deduced from soft gamma-ray lightcurves char-
acterize emission from smaller radii compared to where the high-energy emission
originates from, despite the fact that both MeV and GeV emission are produced
by the same mechanism. We have already shown how the steepening of the spec-
trum comes about for the comoving photon distribution as a result of saturated
pair-cascades. In what follows we will show that the same holds for the spectrum
seen by the distant observer.

We can make a simple analytic estimate of the pair-production opacity and
the photospheric radius as a function of photon energy by using the delta-function
approximation to the pair-production cross-section (Gould & Schréder 1967)

σpp(x
′, x′1) ≈ η(α)σTx′1δ

(

x′1 −
1
x′

)

(8.69)

to write the optical depth for a photon of energyx′ propagating over distanceds′

in the flow frame

dτγγ(x
′) = ds′

∫

σpp(x
′, x′1) n′(x′1) dx′1 ≈ ds′ η(α)σT x′1 n′(x′1)

∣

∣

∣

x′1=1/x′
, (8.70)

whereη(α) is a numerical factor that depends on the power-law index ofthe target
photon distribution. To write this in terms of external frame quantities we as-
sume an isotropic comoving radiation field with a power-law energy distribution
n′(x′) ∝ x′ −α, in which case the external and comoving frame distributions are
related as

x′ n′(x′) =
α + 1

Γ(1+ β)
x n(x)|x=x′ Γ(1+β) . (8.71)
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The photon propagation distances in the two frames are related byds′ = ds/D.
The optical depth for a radially propagating photon can therefore be written as

dτγγ(x
′) ≈ dr η(α)σT

α + 1
[

Γ(1+ β)
]2

x1 n(x1)|x1=Γ(1+β)/x′ . (8.72)

The total pair-production optical depth at radiusr can be obtained by defining
L(x) = 4πr2c x n(x) and using it to integrate equation (8.72) fromr to infinity.
Settingτγγ = 1 and expressingr we then find the photospheric radius

r⋆γγ(x) = η(α)σT
α + 1

[

Γ(1+ β)
]2

L(x1)
4πc

∣

∣

∣

∣

∣

x1=
[Γ(1+β)]2

x

, (8.73)

where we have used the relationx′ = x/Γ(1 + β) between the comoving and
external frame energy of a radially moving photon.

Figure 8.2: Radius of the pair-production photosphere relative to the Thomson
photosphere as a function of photon energy for the fiducial model. Solid curve
represents the numerically calculated radius, the dashed line corresponds to the
analytical estimate given by equation (8.73).

In Figure 8.2 we plot the photospheric radius for the model spectrum shown
in Figure 8.1, calculated by using the exact pair-production cross-section as well
as the actual photon distributions at all radii, together with the analytic estimate
(8.73) calculated for power-law target spectrum (the line with photon index 2.5 in
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Figure 8.1). We can see that the agreement between our rough estimate and exact
calculations is rather good. For these particular parameters the pair-production
photosphere is outside the Thomson photosphere only for photon energies above
∼ 5 GeV.

To make an estimation of the expected luminosity as well as the spectral shape
at high energies one can follow the argument made in Beloborodov (2010) and
assume that all energy injected as high energy pairs will be reprocessed to lower
energy photons by pair cascades and released atr⋆γγ(x). This implies that all pho-
tons emerging from the source above a given energyx are the result of energy
injection at radii larger thanr⋆γγ(x). Defining the fraction of the flow energy car-
ried by radiation (per dimensionless energy interval) as

εrad(x) =
me

mp

L(x)
4πc r2npΓ

2
, (8.74)

we can thus write

∫ ∞

x
εrad(x) dx =

∫ ∞

r⋆γγ(x)

1
npmpc2

rQ̇inj

cΓ
d ln r =

1
16
Γ

Γn

rn

r⋆γγ(x)
, (8.75)

where we have used the collisional dissipation rate given by(8.53), noting that
energy dissipated over one dynamical time equals the energydissipated perd ln r.
Differentiating both sides of equation (8.75) with respect tox and using (8.73) we
obtain

εrad(x) =
πc rn Γ

4η(α)σT(α + 1)Γn

[

Γ(1+ β)
]2 1

x
dL−1(x1)
d ln x1

∣

∣

∣

∣

∣

∣

x1=
[Γ(1+β)]2

x

. (8.76)

By noticing thatL(x1) ∝ x−α+1
1 we can take the derivative in (8.76) and cast the

equation in a more transparent form

εrad(x) =
1

16η(α)
σ

σT

me

mp

Ln

L
(α − 1)
(α + 1)

Γ
[

Γ(1+ β)
]2α

Γ4
n

x−2α+1

εrad,0(x)
, (8.77)

where we have used the definitions (8.48) and (8.74) forrn andεrad,0(x), respec-
tively, as well asL = 4πmpc3r2npΓ

2. The quantityεrad,0(x) denotes the extension
of the low-energy (target) photon distribution to the observed energy, allowing di-
rect comparison between the expected power in the high energy spectrum versus
a simple extrapolation of the lower-energy power-law. Forεrad,0(x) ∝ x−α+1 we
find from equation (8.77) thatεrad(x) ∝ x−α, i.e. we should observe a steepening
of the spectrum by∆α = 1 at high energies. This is consistent with the earlier
discussion in terms of pair-cascades in the comoving frame.
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8.3.2 Magnetized flows

In most plausible scenarios the GRB outflow is expected to carry at least a moder-
ate magnetic field. Magnetization will provide an additional mechanism of cool-
ing electron-positron pairs in addition to Compton and willtherefore affect the
spectral formation at all energies: directly through synchrotron radiation in the
hard X-ray range as well as indirectly through suppressing the pair-cascades at
high energies.

Magnetization is parametrized as the fractionǫB of the bulk kinetic energy
carried by the magnetic field, leading to compactness

lB =
σT

mec2

r
Γ

UB =
ǫB σTL

4πmec3rΓ3
. (8.78)

The case withΓ = 600 andΓn = 100 has been taken as the basis and the simulation
was run forǫB = 0, 10−3, 10−2, 0.1 and 0.5. The corresponding ratios of magnetic
and radiation compactnesses at the start of simulations arelB(rn)/lrad(rn) = 0,
0.0043, 0.043, 0.43 and 2.2. Here the compactnesslrad(rn) is defined as

lrad(rn) =
σTLγ(rn)

4πmec3rnΓ
3
, (8.79)

where Lγ(rn) = 16πcr2
nΓ

2urad(rn)/3 is the luminosity carried by radiation and
urad(rn) is given by equation (8.59). Figure 8.3 shows the effect of the magnetic
field on the spectrum. The effects on different quantities characterizing the flow
are summarized in Table 8.1.

The synchrotron radiation from the thermal component of thepair distribution
is strongly self-absorbed and makes no contribution to the observed spectrum.
The relativistic non-thermal pairs (aboveγ ∼ a few) on the other hand radiate
synchrotron in the optically thin regime. It was shown in Beloborodov (2010) that
for typical parameters their synchrotron radiation peaks in the same domain as the
blackbody component and is therefore buried under the latter for sub-dominant
magnetizations. Just below the thermal peak the addition ofsynchrotron photons
has the effect of softening the spectral slope (see Table 8.1), to values more com-
patible with those typically observed (Preece et al. 2000).At lower energies the
softer synchrotron spectrum will emerge from under the hardthermal spectrum,
and can be seen as a separate component. This might provide anexplanation for
the X-ray excesses that have been observed in several bursts(Preece et al. 1996),
a prominent recent example being GRB 090902B (Abdo et al. 2009a).

Low-energy emission

Below 5 – 10 keV the synchrotron emission switches to a partially self-absorbed
regime. At any given stage of the flow expansion there exists awell-defined self-
absorption energyxs, below which the source is optically thick to synchrotron
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Figure 8.3: Spectra from a magnetized flow. The solid, short-dashed, long-dashed,
dotted and dash-dotted lines correspond to magnetizationsǫB = 0, 10−3, 10−2, 0.1
and 0.5, respectively. The straight dotted line shows a power-lawspectrum with
α = 1.

radiation. Theintrinsic spectrum atx < xs has a photon indexα = −1.5, charac-
teristic of a power-law electron distribution producing the self-absorbed emission.
However, as the flow expands, the self-absorption frequencydecreases, as does the
synchrotron emissivity abovexs. Theobserved low-energy spectrum is therefore
formed as a superposition of emission produced right above the self-absorption
frequency at different radii. To see this and also give a rough estimate for theex-
pected spectral shape, let’s write the emission and absorption coefficients as3 (see
e.g. Ghisellini & Svensson 1991)

js(x) =
∫

P(x, γ) ne(γ) dγ, (8.80)

κs(x) =
λ3

C

8πc
1
x2

∫

P(x, γ) γp
d

dγ

[

ne(γ)
γp

]

dγ, (8.81)

3We are temporarily omitting the primes from all quantities for simplicity even though we are
working in the comoving frame.
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Table 8.1: Results of simulations

ǫB
a Epeak

b αc εrad
d r⋆/rn

e Y f Q̇ep/Q̇inj
g kTe

h

(MeV) (keV)

0 3.2 0.30 25.6 0.20 1.03 9.7
10−3 2.8 0.60 0.30 25.0 0.20 1.01 9.6
10−2 2.1 0.98 0.30 23.0 0.17 0.93 9.1
0.1 1.3 1.17 0.31 16.9 0.08 0.68 7.9
0.5 1.2 1.10 0.36 8.9 0.03 0.36 6.8

Notes.
a Magnetization
b Spectral peak energy.
c Photon index in the 100 – 500 keV range.
d Radiative efficiencyεrad = Lγ/L.
e Radius of the Thomson photosphere relative to the radiusrn = 5.3× 1010 cm where the
dissipation starts.

f Pair yieldY =M/γ0, whereM is the secondary pair multiplicity andγ0 = 300 is the
Lorenz factor of injected electrons.

g Ratio of thermal and non-thermal dissipation rates atr⋆.
h Pair temperature atr⋆.

wherene(γ) is the pair number density perdγ. For our purposes it is sufficient
to use a simple delta-function approximation for the isotropic single-particle syn-
chrotron emissivity, i.e.

P(x, γ) =
4
3
σTUB

mec
p2 δ

(

x − γ2xL

)

, (8.82)

where xL = B/Bcr is the Larmor energy inmec2 units andBcr = m2
ec3/~e ≈

4.4 × 1013 G is the critical magnetic field strength. The electrons/positrons re-
sponsible for the partially self-absorbed emission are in the power-law tail of the
distribution, thus we may writene(γ) = Aγ−δ. The emission and absorption coef-
ficients now take the form

js(x) =
2
3

A
σTUB

mec
1
xL

(

x
xL

)−(δ−1)/2

(8.83)

and

κs(x) =
2π2

9
(δ + 2) A

e
B

(

x
xL

)−(δ+4)/2

. (8.84)

In the comoving frame the following scalings hold as a function radius from the
central source (or, equivalently, comoving time)

B =
√

8πǫBnpmpc2 ∝ r−1, xL ∝ r−1, A ∝ r−2. (8.85)
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The characteristic optical depth at a given photon energy isthus

τs(x) =
2

δ + 4
r
Γ
κs(x) ∝ (x r)−(δ+4)/2. (8.86)

Settingτs(x) = 1 we find that the self-absorption frequency scales as

xs ∝ r−1. (8.87)

From Equations (8.84), (8.85) and (8.86) we also find that

xs

xL
= γ2

s = constant, (8.88)

thus the energyγs of the pairs emitting near the self-absorption frequency remains
the same along the flow. The value ofγs is a weak function of the magnetic field
strength and takes on values between 10 and 15 for the cases considered here.

The emissivity near the self-absorption frequency can be read from Equation
(8.83), settingx = xs. Using (8.85) and (8.88) we find that

js(xs) ∝ r−3. (8.89)

For the optically thin synchrotron emissivity we may write

js(x) = js(xs)

(

x
xs

)−(δ−1)/2

. (8.90)

The radiation energy perdx in the external frame normalized to the total flow
energy is expressed as (reintroducing primes for comoving frame quantities)

εrad(x) =
∫ ∞

r⋆s (x)

1
npmpc2

r j′s(x
′)

cΓ2
d ln r, (8.91)

wherer⋆s (x) ∝ 1/x is the photospheric radius. The integral is performed over the
optically thin domain for a given photon energy. Inserting Equation (8.90) into
(8.91), using the scalings (8.87), (8.89) andnp ∝ r−2, and finally observing that
xs = x at the photospheric radius, we arrive at the result

εrad(x) ∝ x0, (8.92)

with the corresponding photon index for the partially self-absorbed emissionα =
1.

Note that the low-energy emission is delayed relative to thegamma-rays, ow-
ing to xs ∝ r−1 = (cΓ2tobs)−1. In principle, this emission can extend all the way
down to the optical band, with a typical delay of the order of 1sec. However, it
is not strong enough to explain the bright optical flashes seen in some bursts (e.g.
GRB 080319B).
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High-energy emission and pair cascades

Increasing the magnetization has strong effect on the high-energy emission since
synchrotron cooling of the non-thermal pairs starts competing with the inverse-
Compton process. A direct consequence of this is the decrease of the high-energy
flux. Magnetization also has a suppressing effect on the pair-cascade as a fraction
of the particles’ energy is given to low-energy synchrotronradiation which cannot
participate in the creation of secondary pairs and is thus lost to the cascade pro-
cess. One can show that the multiplicity of each subsequent pair generation in a
saturated cascade is suppressed by a factorfB ≈ 1 + ǫB/εrad. For magnetic fields
approaching equipartition with radiation (i.e.ǫB/εrad ∼ 1), only two generations
of secondary pairs can make a significant contribution to thetotal pair multiplic-
ity. As a result, the total pair yield decreases fromY = 0.20 to about 0.025 as the
magnetization parameter increases from 0 to 0.5 (Table 8.1).

The decrease of the pair yield leads to the decline of the Thomson optical
depth in pair creation-annihilation balance, as the two arerelated byτT ∝ Y1/2

(see Equation (23) in Beloborodov 2010). As a consequence, the radius of the
Thomson photosphere also decreases as magetization is increased. Most impor-
tantly, however, it results in the decrease of the thermal heating rate, since the
latter proportional toτT (see Equation (8.51)), and thus also the ratioQ̇ep/Q̇inj , as
the non-thermal injection rate is unaffected. Interestingly enough, the total radia-
tive efficiencyεrad remains almost unchanged (or even increases moderately). The
diminished total dissipated energy is more than compensated by the decrease in
adiabatic losses of the photon field due to the lower optical depth, which allows
an earlier decoupling of radiation from matter.

On the other hand, the mean photon energy, which is roughly correlated with
the spectral peak, does decrease. This is the result of the increasednumber of
photons due to synchrotron radiation, which have to share the available energy. In
the absence of magnetization, the number of photons is approximately conserved:
it is unchanged by adiabatic cooling and Compton scattering, and the amount pro-
duced by the annihilation of injected pairs is negligible. Therefore given the flow
energy per photon at launch, the average observed photon energy simply tracks
the radiative efficiency. Instead, with increasing magnetization, the average en-
ergy approximately follows the number of introduced photons, since the radiative
efficiency does not change significantly.

Looking at Table 8.1, we can see that the temperatureΘe of the thermal com-
ponent of the pair distribution decreases by about 30 % as magnetization is in-
creased toǫB = 0.5. This is a sole consequence of the decreasing Compton
temperatureΘC of the radiation field, brought about mainly by the introduction
of soft synchrotron radiation from non-thermal pairs. Notethat even though the
thermal (volume) heating rate of pairs decreases with increasing magnetization,
the heating rateper particle does not. Also, the thermal pairs are unable to cool
by synchrotron radiation because they emit in a strongly self-absorbed regime.
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As Θe − ΘC ≈ constant, the decrease of the Kompaneetsy-parameter defined as
y = 4τT(Θe − ΘC) is mainly the result of the smaller Thomson optical depth of
the pairs. This leads to a steeper slope of the thermal-Comptonized spectrum
above the peak. At high magnetization, however, the synchrotron emission from
the highest energy electrons will start distorting the high-energy power-law, as
evidenced by a subtle bump near 15 MeV in theǫB = 0.5 spectrum in Figure 8.3.

8.4 Conclusions

Nuclear collisions between protons and neutrons can dissipate a significant frac-
tion of the kinetic energy of a GRB outflow by heating the proton component as
well as via non-thermal injection of high-energy pairs resulting from inelastic p-n
collisions (Beloborodov 2010). The dissipation operates relatively close to the
central source and over a range of radii (∼ 1011− 1013 cm).

We have modeled the emission from such an outflow by self-consistently solv-
ing the time-dependent kinetic equations describing the evolution of particle and
photon distributions inside the flow. The simulations are run in the comoving
frame, following a ‘representative’ fluid element along itsworld-line as it propa-
gates through the dissipation region, expecting all other elements of the outflow to
undergo similar evolution. Although our treatment of radiative processes is local
(in a sense that different elements of the flow are assumed to be causally discon-
nected), we have proposed a simple method of taking into account the effects of
emission from different flow elements propagating at various angles to the lineof
sight on the observed spectrum.

Owing to the relatively small distances from the central engine, the thermal
photon field advected from the centre still carries a sizablefraction of the total flow
energy when the dissipation begins and has a significant influence of the spectral
formation. Most importantly, it provides the seed photons for Comptonization,
leading to a Band-type spectral shape peaking in the MeV range. The hard low-
energy slope of the thermal component also makes it easy to accommodate even
the hardest observed GRB spectra.

An important feature of the model is the significant amount of(multi-)GeV
emission it predicts. It is a direct consequence of the fact that collisional heating
operates over a range of radii. Thus, even though the flow is optically thick to
GeV photons at the beginning of the dissipation episode, it becomes transparent
to photons at progressively higher energies as the flow expands, but while the
dissipation is still operating. As a result, the high-energy spectrum exhibits a
steepening relative to the slope at lower energies, insteadof a cutoff.

A subdominant magnetization will lead to softening of the spectral slope be-
low the peak due to the additional contribution from soft synchrotron radiation of
non-thermal pairs. A separate soft component at lower energies is also produced.
The additional cooling of the high-energy pair distribution due to synchrotron has
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a throttling effect on the pair-cascades. The multiplicity of secondary pairs will
decline, as will the thermal heating rate since it depends onthe Thomson optical
depth. The resulting spectra will peak at lower energies compared to the non-
magnetized case. All in all, the low-energy slopes as well asspectral peaks from
magnetized flows are in better agreement with those typically observed in GRB-s
(Preece et al. 2000; Nava et al. 2010), relative to case with no magnetic field.



Chapter 9

Spectral states of accreting black
holes

The physical processes giving rise to the X-ray/gamma-ray emission of accret-
ing black-hole binaries (BHBs) have been a matter of debatesover the last four
decades. The hard-state spectra, showing a strong cut-off around 100 keV, are well
described by thermal Comptonization (e.g. Poutanen 1998; Zdziarski & Gierliński
2004), while a weak MeV tail requires the presence of nonthermal particles (Mc-
Connell et al. 1994; Ling et al. 1997). The origin of seed softphotons for Comp-
tonization is, however, much less clear. An apparent correlation between the
spectral slope and the amount of Compton reflection (Zdziarski et al. 1999) ar-
gues in favor of the accretion disk, while the observed optical/X-ray correlation
(Motch et al. 1982; Kanbach et al. 2001) leans toward the synchrotron hypothesis
(e.g. Fabian et al. 1982; Wardziński & Zdziarski 2001). Interesting questions are
then: what stabilizes the X-ray spectral slope atα ∼ 0.6–0.8, and what fixes the
temperature of the emitting plasma atkTe ∼ 50–100 keV (Zdziarski et al. 1997;
Poutanen 1998; Zdziarski & Gierliński 2004)? Do the feedback from the cool ac-
cretion disk and the thermostatic properties of electron-positron pairs (Haardt &
Maraschi 1993; Haardt et al. 1994; Stern et al. 1995b; Malzacet al. 2001) play a
role here? Or does the cooling by synchrotron radiation (Narayan & Yi 1995) act
as a stabilizer?

In the soft state, BHB spectra are dominated by thermal disk emission of tem-
peraturekTBB ∼ 0.4–1.5 keV. At higher energies the spectrum is power-law-like
and shows no signatures of the cut-off (Grove et al. 1998), extending possibly up to
10 MeV (McConnell et al. 2002). This emission is well described by Comptoniza-
tion in almost purely nonthermal plasmas (Poutanen & Coppi 1998; Gierliński
et al. 1999; Coppi 1999; Zdziarski et al. 2001; Zdziarski & Gierliński 2004). We
can then ask why the electrons are nearly thermal in the hard state, and what
causes such a dramatic change in the electron distribution when transition to the
soft state happens. Poutanen & Coppi (1998) proposed that the two states are dis-
tinguished by the way the energy is supplied to the electrons: by thermal heating,
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dominating during the hard state, and by nonthermal acceleration, operating in the
soft state. However, their treatment of Coulomb collisions(usingeqpair code by
Coppi 1992, 1999) was approximate, and they have neglected the effect of syn-
chrotron boiler, involving the emission and absorption of synchrotron photons,
which can act as an efficient particle thermalizer (Ghisellini et al. 1988).

Ghisellini et al. (1998) studied for the first time the combined effect of the
synchrotron boiler and Compton cooling on the electron distribution and photon
spectra (but neglected Coulomb scattering). They considered a two-phase corona
model (Haardt & Maraschi 1993; Haardt et al. 1994; Stern et al. 1995b), where
half of the high-energy radiation was assumed to be reprocessed by the disk to
soft photons. As the actual geometry of the emitting region is not known, we start
from pure synchrotron self-Compton models (i.e. with no external soft photons)
and compute self-consistently the electron (positron) andphoton distributions. We
then investigate how the additional soft photons (e.g., associated with the inner
radius of the cool accretion disk) affect the equilibrium distributions and compare
the results of simulations with the data on Cyg X-1. The preliminary results of
this study were presented by Vurm & Poutanen (2008).

9.1 Model setup

We consider a black hole of mass 10M⊙, typical for stellar-mass BHBs. We as-
sume that the inner accretion flow is hot and almost spherical, corresponding to
the advection-dominated (Narayan & Yi 1995; Abramowicz et al. 1995; Esin et al.
1997) or to the recently discovered luminous hot accretion flow solutions (Yuan
2003; Yuan & Zdziarski 2004). One expects that most of the gravitational energy
release happens within aboutR = 10RS = 3 × 107 cm (whereRS = 2GM/c2

is the Schwarzschild radius) from the black hole, and we thusfix the size of
the active region at this value in most of the simulations. The released energy
needs to be transferred to electrons via, e.g., Coulomb collisions with hot pro-
tons, collective plasma effects, magnetic reconnection, or shocks. We assume that
the energy transfer to the electrons is given by a power-law-injection function
dNe/(dt dγ) ∝ γ−Γinj extending in the Lorentz factor fromγ = 1 to 103. To keep
the Thomson optical depth of the electrons associated with protonsτp constant,1

the same number of electrons from the equilibrium distribution is removed from
the system. In this case, the net power isLinj=

4π
3 R3Ṅe(〈γ〉inj − 〈γ〉eq)mec2, where

〈γ〉inj and〈γ〉eq are the mean Lorentz factors of the injection function and ofthe
equilibrium distribution, respectively, anḋNe is uniquely determined by the model
parameters and〈γ〉eq.

The injected electrons are cooled by synchrotron emission and Compton scat-
tering at timescales much shorter than the accretion time. The synchrotron ra-

1The total optical depth might be larger due to the produced pairs, but for parameters consid-
ered here, the amount of pairs is negligible.
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Figure 9.1: Equilibrium photon spectra (left panel) and electron distributions
(right panel)p2dτ/dp (i.e., momentum per logp, whereτ is the Thomson optical
depth andp =

√

γ2 − 1 is the dimensionless electron momentum) for different
electron injection slopes:Γinj = 2 (dotted curve), 3 (solid) and 4 (dashed). The
results for the fiducial parameter setL = Linj = 1037 erg s−1, Γinj = 3, τp = 1.5,
ηB = 1, f = 0, are shown by solid curves in both panels. The electron tempera-
tures and photon spectral indices are given in Table 9.1.

diation is strongly self-absorbed up to hundreds of harmonics, and therefore the
cooling depends strongly on the high-energy tail of the electron distribution (see
e.g. Wardziński & Zdziarski 2001). The importance of synchrotron processes is
determined by the ratioηB = UBR2c/Linj , whereUB = B2/(8π) is the magnetic
energy density andLinj ≈ 4π

3 R2cUrad (so thatηB ≈ 3/4π ≈ 0.25 corresponds to an
equipartition of the magnetic and radiation energy densities,UB = Urad). The seed
photons for Compton upscattering can be provided by the synchrotron as well as
by the external sources, the cool accretion disk being the most natural one. The
external soft photons are modeled as a blackbody of temperatureTBB determined
from the Stefan-Boltzmann lawLdisk = 4πR2σSBT 4

BB. The cooling by external
photons depends on the ratiof = Ldisk/Linj . The total escaping photon luminosity
is L = Ldisk + Linj = (1+ f )Linj.

9.2 Synchrotron self-Compton models

We first assume that the cool disk is sufficiently far away and does not sup-
ply any seed soft photons to the inner hot flow. Thus we consider pure syn-
chrotron self-Compton (SSC) models (f=0). We choose the fiducial parameter set
L = Linj = 1037 erg s−1 andτp=1.5 (typical for the hard state of BHBs, Zdziarski
et al. 1997),R = 3×107 cm,Γinj = 3 (ad hoc), andηB =1. The equilibrium electron
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Figure 9.2: Equilibrium photon spectra (left panel) and electron distributions
(right panel)p2dτ/dp for different magnetizationηB = 0.1 (dotted), 1 (solid),
10 (dashed). The results for the fiducial parameter set are shown by solid curves.

Figure 9.3: Equilibrium photon spectra (left panel) and electron distributions
(right panel)p2dτ/dp for different optical depthτp = 0.15 (dotted), 1.5 (solid), 15
(dashed). The results for the fiducial parameter set are shown by solid curves.
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Figure 9.4: Equilibrium photon spectra (left panel) and electron distributions
(right panel)p2dτ/dp for different ratios of the external disk photons to the in-
jected powerf = 0, 0.1, 0.3, 1, 3 (solid, dotted, dashed, dot-dashed, long-dashed
curves, respectively) for constant total luminosityL. The results for the fiducial
parameter set are shown by solid curves.

distribution consists of a Maxwellian part withkTe =66 keV and a power-law-like
tail with the slope modified by coolingΓe = Γinj + 1 = 4 (wheredNe/dγ ∝ γ−Γe;
see the solid curve in Figure 9.1(b)). The synchrotron emission is strongly self-
absorbed with only the nonthermal tail aboveγ & 20 contributing to emission
above the self-absorption energy at& 10 eV. As the amount of seed soft (syn-
chrotron) photons is low, the Comptonization spectrum (produced predominantly
by the thermal electron population) is hard with the photon energy indexα ≈ 0.9
and a cut-off at ∼ 100 keV, which is similar to the hard state of BHBs. A tail
produced by single-Compton scattering off the power-law electron tail is clearly
visible above MeV.

Variation of the slope of the injected electrons leads to a large change in the
tail of the electron distribution and dramatic difference in the synchrotron emis-
sion. A soft electron injection withΓinj & 4 leads to efficient thermalization and
a small amount of soft photons resulting in rather hard radiation spectra, with the
photon energy indexα . 0.7 (see dashed curves in Figure 9.1). A hard injec-
tion gives more power to the nonthermal tail and more seed photons for Comp-
tonization (see also Ghisellini et al. 1998; Wardziński & Zdziarski 2001), which
causes a drop in the electron temperature (see the dotted curves in Figure 9.1). A
strong ’bump’ also develops in the tail of the electron distribution atγ ∼ 3. The
synchrotron emission produced by these electrons is still strongly self-absorbed,
while the energy losses and gains stay close to each other foran extended en-
ergy interval (Katarzyński et al. 2006). In this regime, the ratio of synchrotron
heating and cooling rates for a power-law distribution of relativistic electrons is
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Table 9.1: Results of simulations

Pa αb Te
c

(keV)

Fiduciald 0.89 66

Γinj 2 1.07 27
4 0.73 90

ηB 0.1 0.75 77
10 0.98 64

τp 0.15 1.12 160
15 0.58 4

f 0.1 0.97 61
0.3 1.13 49
1 1.61 31
3 2.46 16

Notes.
a Varying parameter and its value.
b Photon spectral index in the 2–10 keV range.
c Temperature of the Maxwellian part of the electron distribution.
d Fiducial set of parametersL = 1037 erg s−1, R = 3× 107 cm,

f = 0,Γinj = 3, τp = 1.5,ηB = 1.

γ̇h/γ̇c ≈ 5/(Γe + 2).2 Observe that forΓe = 3 (i.e. forΓinj = 2) the heating and
cooling rates are balanced, however, such an equilibrium isunstable (Rees 1967).
The Comptonized spectrum for hard injectionΓinj = 2 (see Figure 9.1(a)) is much
softer than the hard-state spectra of BHBs, even without anycontribution to the
cooling from the disk, strongly constraining the electron injection mechanism in
BHBs.

The efficiency of synchrotron cooling depends on the magnetic field strength
parametrized here via magnetizationηB. At small ηB (see Figure 9.2(b)), syn-
chrotron is inefficient and cooling is dominated by thermal Comptonization. A
higher normalization of the power-law part of the equilibrium electron distribution
leads to a stronger MeV tail. ForηB .1 (andΓinj > 3), the thermal Comptoniza-
tion spectrum is very stable withα ∼ 0.7–0.9. At largeηB > 1, the synchrotron
thermalization operates more efficiently and the thermal part of the distribution
persists to higher energies. The increasingB-field compensates for the decrease
in the power-law tail leading to a higher synchrotron emission, which results in
softening of the Comptonized spectrum.

2This expression can be derived by employing the delta-function approximation for syn-
chrotron emissivity to calculate the source function and using it in the expression for heating
by self-absorption (see e.g. Ghisellini et al. 1988; Katarzyński et al. 2006).
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Consider now variations ofτp for the fixed Linj . At high τp, the equilib-
rium electron temperature drops, leaving fewer energetic electrons for synchrotron
emission and, therefore, reducing the number of seed photons for Comptonization
(Figure 9.3). This, in turn, results in the harder photon spectra produced by sat-
urated Comptonization (by thermal electrons) and a weak high-energy tail (pro-
duced by nonthermal electrons), very similar to the ultrasoft spectra of BHBs (see
Figures 8 and 9 in Zdziarski & Gierliński 2004). At smallerτp, the higher electron
temperature leads to a stronger synchrotron cooling and to alower Comptonized
luminosity and, therefore, softer Comptonized spectra.

Let us now apply the developed model to the hard state of Cyg X-1. The
MeV tail observed there withαMeV ≈ 2 (McConnell et al. 2002) constrains the
injection slope to beΓinj < 2αMeV = 4. Then the hard X-ray spectra withα .
0.7 and a high-energy cutoff at ∼ 100 keV (see Figure 9.5) requireτp ∼ 1 and
low ηB .0.1 (see also Wardziński & Zdziarski 2001; McConnell et al.2002). Any
additional soft photons from the disk will make the spectrumsofter, reducingηB

even more. The low magnetic field rules out magnetic reconnection as the energy
dissipation mechanism. This also implies that electrons cannot be thermalized
by the synchrotron self-absorption. On the other hand, if the size of the active
region isR ∼ 60RS, Coulomb scattering becomes important (as its influence grows
linearly with size for constantL, see, e.g., Coppi 1999; Svensson 1999), and it can
thermalize electrons at a rather high temperature ofkTe ∼ 100 keV as observed in
Cyg X-1 (Gierlinski et al. 1997; Poutanen 1998).

We reiterate that the whole spectrum here is produced by the SSC mechanism.3

Its thermostatic properties fix the electron temperature at50–100 keV (forτp ∼ 1)
and stabilize the spectral slope atα ∼ 0.7–0.9. The feedback from the disk (Haardt
& Maraschi 1993; Haardt et al. 1994; Stern et al. 1995b; Malzac et al. 2001) does
not seem to be needed.

9.3 Spectral transitions and the role of disk photons

The spectral transitions observed in BHBs are most probablyaccompanied by a
change in the geometry of the accretion disk. The cool outer disk moves toward
the central black hole causing an increasing flux of the soft photons to the central
hot flow (Esin et al. 1997; Poutanen et al. 1997; Poutanen & Coppi 1998), which
we simulate here by increasingf (see Figure 9.4). Higher soft photon flux leads
to faster Compton cooling and lower equilibrium electron temperature, making
the nonthermal part more pronounced. The resulting photon distribution changes
from the hard, thermal Comptonization dominated, spectrumto the one dominated
by the disk blackbody, with a nonthermal tail extending to tens of MeV, which
becomes harder at higherf . The spectral changes triggered by varyingf are

3ADAF-based models also consider SSC as the main cooling mechanism; see Narayan et al.
(1998) for the review.
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Figure 9.5: Spectral states of Cyg X-1. Crosses show the unfolded spectral data
presented by Zdziarski et al. (2002). The model spectra withinterstellar absorp-
tion (described by the column densityNH) and Compton reflection (described by
the solid angleΩ and ionization parameterξ, Magdziarz & Zdziarski 1995) taken
into account are shown by the solid curves. The parameters for the hard-state
model are:L = 2.7× 1037 erg s−1, R = 1.8× 108 cm, f = 0, Γinj = 3.8, τp = 2.5,
ηB = 0.083, NH = 3 × 1021 cm−2, Ω/(2π) = 0.2, ξ = 0. The soft state can be
described byL = 4.85× 1037 erg s−1, R = 3.85× 107 cm, f = 2.13, Γinj = 2.2,
τp = 0.3, ηB = 1.5, NH = 5× 1021 cm−2, Ω/(2π) = 0.7, ξ = 100.

similar to the one observed in Cyg X-1 (see Figure 9.5). A detailed comparison
with Cyg X-1 spectra shows, however, that other parameters change too.

Compared to the hard state, the soft state corresponds to a higher total lumi-
nosity. The MeV tail is harderαMeV ≈ 1.6 (McConnell et al. 2002), and therefore
Γinj < 3.2. If the tail of the blackbody at 3–10 keV (see Figure 9.5) is produced
in the same emission region, it requires a rather hot thermalpopulation of elec-
trons, which needs highηB for the synchrotron thermalization to operate (because
Coulomb thermalization is not efficient under the conditions of strong Compton
cooling). This would be consistent with the magnetically dominated emission re-
gion. Alternatively, there may be additional heating mechanisms operating. Also
the tail might be a result of Comptonization in the hot ionized skin of the disk,
not directly related to the emission we discuss here, but this interpretation might
not be easily reconciled with the fact that the disk is stable, while the tail varies
(Churazov et al. 2001). While the dramatic changes in the electron and photon
distributions between the states are mainly caused by variations of the disk lumi-
nosity, it is obvious that other parameters do change duringthe transition. We
stress that none of the presented models requires any additional thermal heating,
which is different from the models of Poutanen & Coppi (1998) and Gierliński
et al. (1999).
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9.4 Conclusions

The hard state of BHBs can well be described by the quasi-thermal SSC mecha-
nism. The feedback from the cool disk is not needed to stabilize the spectral slope
and the electron temperature. Electrons can be injected to the active region with
the power-law spectrum, but Coulomb scattering and synchrotron self-absorption
thermalize them efficiently. This reduces the need for mysterious ’thermal heat-
ing’ that was invoked previously to explain thermal Comptonization spectra of
BHBs. The MeV tail together with the hard X-ray spectra of BHBs with photon
indicesα .0.7 and a cutoff at 100 keV require rather low magnetizationηB < 0.1
and a large size ofR & 60RS. In that case, magnetic reconnection can be ruled
out as a source of energy. Similar results we obtained independently by Malzac &
Belmont (2009).

At high optical depth of the emitting regionτp & 10, in the absence of disk
radiation, the spectrum is close to saturated Comptonization, peaking at a few keV.
This Wien-type spectrum might be associated with the ultrasoft state of BHBs.
At low τp, the electrons are hotter and the spectra are softer due to the efficient
synchrotron cooling.

A behavior similar to what is observed during the spectral state transitions
in BHBs can be reproduced by varying the ratio of injected soft luminosity and
the power dissipated in the hot phase, which could be caused by varying the ra-
dius of the inner cool disk. The increasing Compton cooling causes dramatic
changes in the electron distribution from almost purely thermal to nearly non-
thermal. The photon distribution also changes from quasi-thermal SSC to the
nonthermal Comptonization of the disk photons. In the soft state of Cyg X-1,
a strong magnetic field can thermalize electrons at sufficiently high temperature,
which is consistent with a magnetically dominated corona being responsible for
the high-energy emission.
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Summary

Understanding the physical conditions as well as the radiative mechanisms giv-
ing rise to the broad-band spectra in various astrophysicalsources like accret-
ing black holes, relativistic jets in active galaxies and gamma-ray bursts requires
detailed modeling of particle–photon interactions takingplace via different pro-
cesses. This is a formidable task for several reasons. First, both the particle and
photon energies can span many orders of magnitude. Aside from different pro-
cesses behaving differently, a given process can also exhibit significantly different
behaviour depending of the energy regime. Compton scattering is the most promi-
nent example: depending on the particle/photon energies, either the particle or the
photon can gain or lose a negligible or significant fraction of its energy in one
scattering, each case requiring different numerical treatment. Secondly, the wide
energy range also means that we have vastly different timescales in the problem,
which has implications for the stability of the numerical scheme. Finally, the ki-
netic equations describing the evolution of particle and photon distributions are
coupled, making the problem non-linear.

We have developed a new computer code for simulations of radiative pro-
cesses in magnetized rarefied plasmas that is able handle theaforementioned dif-
ficulties. The included processes Compton scattering, pairproduction and annihi-
lation, synchrotron processes and Coulomb scattering. Allthe relevant rates are
calculated without approximations and are therefore validirrespective of the par-
ticle/photon energies. The interaction terms in the kinetic equations are written in
the form most suitable for the treatment of each process, resulting in both integral
and up to second order differential terms in the equations. The resulting coupled
integro-differential kinetic equations describing time evolution of the photon and
electron/positron distributions are solved simultaneously. The inclusion of second
order differential terms allows us to treat particle thermalization by Compton and
Coulomb scattering as well as synchrotron self-absorption.

The employed numerical techniques guarantee energy (and particle, when rel-
evant) conservation with high accuracy which is especiallyimportant when deal-
ing with strongly self-absorbed synchrotron radiation. The implementation of
the Chang and Cooper scheme gives the correct shape of the particle distribu-
tion at low energies. The area of application of the code is enormous as it can
deal with photons and leptons covering many orders of magnitude in momentum
space, with no potential difficulty of extending it to even lower/higher energies.
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We present a number of test runs, where we consider problems previously solved
by other methods. We compute non-thermal pair cascades, andstudy lepton ther-
malization by synchrotron self-absorption, as well as model the emission from
the stochastically heated pairs that might have a relation to the prompt emission
of gamma-ray bursts. We find a good agreement in the parameterspace where
comparison is feasible while the differences can be explained by our improved
treatment of microphysics.

We have applied the code to study prompt gamma-ray burst emission from
neutron-loaded flows, in which the relative kinetic energy of neutron and proton
flows can be dissipated through nuclear collisions. The dissipation is in the form
of thermal heating as well as high-energy injection of electron-positron pairs and
takes place over a range of distances from the central source. We have described a
method of simulating radiative processes in the relativistic diverging outflow with
our one-zone code by considering the evolution of particle and photon distribu-
tions in the comoving frame of the fluid. Adiabatic losses of the particle as well
as photon distributions (the latter only in the optically thick regime) are taken into
account. A simple method is described to take into account the effects of variable
Doppler boosting as well as opacity in flow elements propagating at different an-
gles to the line of sight. Our results are in good agreement with those obtained by
Monte Carlo methods by Beloborodov (2010).

The spectrum is formed by the combined effect of thermal and non-thermal
Compton scattering, the seed photons for which are providedby the thermal ra-
diation component advected from the central source. The overall spectral shape
resembles the Band-type spectrum typically observed in gamma-ray bursts, peak-
ing near 1 MeV. Below the peak, the spectrum is hard and is determined by the
advected thermal component (in the non-magnetized case). Above the peak, the
comparable amount of thermal and non-thermal dissipation leads to relatively
smooth Comptonized spectrum. At the highest energies (above several GeV) the
spectral shape is determined by saturated pair cascade, which leads to steepen-
ing by unity in photon index relative to lower energies. On top of the otherwise
smooth spectrum, the model predicts a Lorentz boosted annihilation feature at a
couple of 100 MeV. In principle, this constitutes a well-defined observational test.
However, in reality the detection of such feature might prove difficult due to the
limited photon statistics at these energies.

The introduction of a magnetic field has two main effects: it softens the spec-
trum below the peak, and it introduces an additional partially self-absorbed syn-
chrotron component at lower energies. The softer spectra might be easier to rec-
oncile with “typical” observed spectral hardnesses, whereas pure thermal emis-
sion tends to be too hard even when accounting for softening due to large-angle
emission. The low-energy synchrotron component could account for the X-ray
excesses that have been observed in some bursts. Further exploration of the mag-
netized model is currently underway.

We have also applied the code to study the radiative mechanisms responsible
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for different spectral states of black hole X-ray binaries, using a simple two-phase
disk-corona model. We find that that thermalizing processeslike synchrotron self-
absorption and Coulomb scattering can play an important role in determining the
spectral shape. This especially applies to the hard state, where efficient Coulomb
thermalization can lead to quasi-thermal Comptonized spectra even for purely
non-thermal (power-law) electron injection. The whole spectrum in this state can
be produced by the synchrotron self-Compton mechanism, without the need for
soft photons from the accretion disk.

Increasing the amount of soft radiation that enters the active region leads to
stronger cooling of the electrons and a transition to a power-law dominated (soft)
state, which is consistent with the decreasing inner radiusof the accretion disk
bringing about the spectral state transition.
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Appendix A

Compton scattering

A.1 Functions s j and S j

All functions s j and S j defined in Chapter 1 can be expanded to series, which
converge in the regionξ < 1/2. It is easy to show that

s j(ξ) =
∞
∑

n=0

a jn (−2ξ)n, S j(ξ) =
∞
∑

n=0

A jn (−2ξ)n, (A.1)

where

a0n =
3
8

[

n + 2+
2

n + 1
+

8
n + 2

− 16
n + 3

]

,

a1n =
1
8

[

n (n + 5)+
24

n + 3

]

, a2n =
1
32

(

n3 + 9n2 + 22n + 32
)

. (A.2)

Using equations (1.48), one can obtain the expressions for the coefficients A

Table A.1: Coefficientsa jn andA jn.

n 0 1 2
a0n 1 1 13/10
a1n 1 3/2 47/20
a2n 1 2 15/4
A1n 1 21/10 147/40
A2n 6/5 53/20 159/35
A3n 1 14/5 47/8
A4n 7/5 22/5 341/35
A5n 1/5 2 401/70
A6n 1/10 1/5 207/280
A7n 3/10 3/5 281/280
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througha:

A1n = 2 (a1n+1 − a0n+1), A2n = 2 (A1n+1 − a1n+1), A3n = 2 (a2n+1 − a1n+1),

A4n = 2 (A3n+1 − A1n+1), A5n = 3 A4n − 4A3n, A7n = A3n − A4n/2,

A6n = a2n − 3 A7n. (A.3)

The coefficients forn = 0, 1, 2 are presented in Table A.1.

A.2 Auxiliary functions ψi j andΨi j

The total cross-section and mean powers of energy of scattered photons are ex-
pressed through the functions of one variable

ψi j(ξ) =
i + 1
ξi+1

∫ ξ

0
xi s j(x) dx, i > −1, ψ−1 j(ξ) =

1
ξ

∫ ξ

0
[1 − s j(x)]

dx
x
,

Ψi j(ξ) =
i + 1
ξi+1

∫ ξ

0
xi S j(x) dx. (A.4)

Calculations of functionsψi j involve integrals of the following types:
∫

dx xm ln(1+ 2x),
∫

dx
xn

(1+ 2x)l
, g(ξ) =

∫ ξ

0
ln(1+ 2x)

dx
x
, (A.5)

wherem = −1, 0, 1, 2, 3 andn, l = 1, 2, 3, 4. All integrals are elementary except
g(ξ), which is described in details in Appendix A.3.

The explicit expressions for the functionsψi j are the following:

ψ−10(ξ) =
1

8ξ

[

4
ξ2
+

2
ξ
+

(

8+
3
ξ
− 3
ξ2
− 2
ξ3

)

lξ − 3Rξ −
11
3

]

,

ψ−11(ξ) =
1

8ξ

[

7
3
+

2
ξ
− 2
ξ2
+

(

8+
1
ξ3

)

lξ − 4Rξ − R2
ξ

]

,

ψ−12(ξ) =
1

16ξ

[

11+ 16lξ − 7Rξ − 3R2
ξ − R3

ξ

]

,

ψ00(ξ) =
3

8ξ

[

g(ξ) − 2
ξ
+

(

1
2
+

2
ξ
+

1
ξ2

)

lξ −
1
2

Rξ −
3
2

]

,

ψ01(ξ) =
3

8ξ

[

1
ξ
− 1

2
+

(

4
3
− 1

2ξ2

)

lξ −
1
3

Rξ −
1
6

R2
ξ

]

, (A.6)

ψ02(ξ) =
1

32ξ

[

7
2
+ 9 lξ − Rξ −

3
2

R2
ξ − R3

ξ

]

,

ψ10(ξ) =
3

4ξ2

[(

ξ +
9
2
+

2
ξ

)

lξ − 4− ξ + ξ2 Rξ − 2g(ξ)

]

,

ψ11(ξ) =
1

4ξ2

[

6+ 4ξ − 3

(

3
2
+

1
ξ

)

lξ − ξ (1+ ξ) R2
ξ

]

,
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ψ12(ξ) =
1

16ξ2

[

1
2
+ 9ξ − 4 lξ − Rξ +

1
2

R3
ξ

]

,

ψ20(ξ) =
9

32ξ3

[

25ξ +
(

2ξ2 − 8ξ − 5
)

lξ + ξ Rξ − 8g(ξ)
]

,

ψ21(ξ) =
9

8ξ3

[

g(ξ) +
2
3
ξ2 − 3

2
ξ − 1

4
lξ −

ξ2

6
R2
ξ

]

,

ψ22(ξ) =
3

64ξ3

[

9ξ2 − 8ξ + 5 lξ − ξ (2+ 11ξ + 10ξ2) R3
ξ

]

, (A.6)

ψ30(ξ) =
3

12ξ4

[

ξ3

3
+

31
2
ξ2 +

31
4
ξ +

(

2ξ3 − 6ξ2 − 12ξ − 7
2

)

lξ −
3
4
ξ Rξ

]

,

ψ31(ξ) =
1

24ξ4

[

16ξ3 − 27ξ2 − 45ξ + 3(7+ 12ξ) lξ + 3ξ (1+ 3ξ) R2
ξ

]

,

ψ32(ξ) =
1

16ξ4

[

6ξ3 − 4ξ2 + 5ξ − 3 lξ + ξ (1+ 4ξ + 2ξ2) R3
ξ

]

,

ψ40(ξ) =
15

128ξ5

[

ξ4 +
230
9
ξ3 +

23
6
ξ2 − 17

6
ξ +

(

4ξ4 − 32
3
ξ3 − 16ξ2 +

11
12

)

lξ + ξ Rξ

]

,

ψ41(ξ) =
5

64ξ5

[

8ξ4 − 12ξ3 − 9ξ2 + 8ξ + 3
(

4ξ2 − 1
)

lξ − ξ(2+ 5ξ) R2
ξ

]

,

ψ42(ξ) =
5

256ξ5

[

18ξ4 − 32
3
ξ3 + 10ξ2 − 12ξ +

11
2

lξ + ξ (1+ 7ξ + 14ξ2) R3
ξ

]

,

wherelξ = ln(1+ 2ξ) andRξ = 1/(1+ 2ξ).
The explicit expressions forΨi j can be obtained using definitions (1.48) for

S j:

Ψ11 = 2 (ψ00 − ψ01)/ξ, Ψ13 = 2 (ψ01 − ψ02)/ξ,

Ψ14 = 2 (2ψ−11 − ψ−10 − ψ−12)/ξ, Ψ16 = ψ12 − 3Ψ13+ 3Ψ14/2,

Ψ21 = 3 (ψ10 − ψ11)/2ξ, Ψ22 = 3 (ψ11− Ψ11)/2ξ,

Ψ23 = 3 (ψ11 − ψ12)/2ξ, Ψ24 = 3 (Ψ11− Ψ13)/2ξ,

Ψ25 = 3Ψ24− 4Ψ23, Ψ26 = ψ22 − 3Ψ23+ 3Ψ24/2,

Ψ31 = 4 (ψ20 − ψ21)/3ξ, Ψ32 = 4 (ψ21− Ψ21)/3ξ,

Ψ33 = 4 (ψ21 − ψ22)/3ξ, Ψ34 = 4 (Ψ21− Ψ23)/3ξ,

Ψ35 = 3Ψ34− 4Ψ33, Ψ37 = Ψ33−Ψ34/2,

Ψ36 = ψ32 − 3Ψ37, Ψ41 = 5 (ψ30 − ψ31)/4ξ,

Ψ42 = 5 (ψ31 − Ψ31)/4ξ, Ψ43 = 5 (ψ31− ψ32)/4ξ,

Ψ44 = 5 (Ψ31− Ψ33)/4ξ, Ψ45 = 3Ψ44− 4Ψ43,

Ψ47 = Ψ43− Ψ44/2, Ψ51 = 6 (ψ40 − ψ41)/5ξ,

Ψ54 = 6 (Ψ41− Ψ43)/5ξ, Ψ57 = 6 (ψ41 − ψ42)/5ξ −Ψ54/2. (A.7)
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In these formulae the argumentξ is omitted. For complete evaluation of these
functions we need to compute 18 different functionsψi j given above.

To prevent the loss of accuracy ifξ is very small, we can use the series ex-
pansions (see Nagirner & Poutanen 1994) that directly follow from the definitions
(A.4) and Taylor expansions (A.1):

ψi j(ξ) =
∞
∑

n=0

a jn (−2ξ)n i + 1
i + n + 1

, i > −1, ψ−1 j(ξ) =
∞
∑

n=0

a j n+1 (−2ξ)n 2
n + 1

,

(A.8)

Ψi j(ξ) =
∞
∑

n=0

A jn (−2ξ)n i + 1
i + n + 1

, (A.9)

with a jn andA jn given by equations (A.2) and (A.3), respectively.

A.3 Auxiliary function g(ξ)

Calculations of functionψi j from Appendix A.2 involve integral

g(ξ) =
∫ ξ

0
ln(1+ 2x)

dx
x
. (A.10)

We repeat here for completeness the method of calculations of this integral from
Nagirner & Poutanen (1994). It is possible to write a relation between the values
of this function onξ < 1/2 andξ > 1/2. Let us define for that the auxiliary
function forξ ≤ 1

g∗(ξ) = g(ξ/2) =
∫ ξ

0
ln (1+ x)

dx
x
. (A.11)

It can be presented by series

g∗(ξ)=







































∞
∑

n=1

(−1)n−1ξ
n

n2
if ξ ≤ ξ∗ < 1,

π2

12
+ ln 2 lnξ +

∞
∑

k=0

(1− ξ)k+2

k + 2

k+1
∑

m=1

1
2mm

if ξ∗ ≤ ξ ≤ 1.

(A.12)

As ξ∗ we can take 0.8 – 0.9. Then

g(ξ) =



































g∗(2ξ) if 0 ≤ ξ ≤ 1/2,
π2

12
if ξ = 1/2,

π2

6
+

1
2

ln2(2ξ) − g∗(1/2ξ) if ξ ≥ 1/2.

(A.13)
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A.4 Asymptotic expansions of functionsχj n and ∆ jn

in the Thomson limit

Using Taylor expansion (A.8) of functionsψ0n for small arguments, it is easy to
get an expansion of functionsχ0n in the Thomson limitxγ ≪ 1:

χ0n(x, γ) = γn
∞
∑

l=0

(−2xγ)l a0l κn+l+1, (A.14)

where

κl =
(1+ β)l+1 − (1− β)l+1

2β(l + 1)
=

int(l/2)
∑

k=0

l! β2k

(2k + 1)! (l − 2k)!

=
(1+ β)l

l + 1

l
∑

k=0

1
[γ(1+ β)]2k

(A.15)

and int(x) is the integer part ofx. A few first functions are

κ1 = 1, κ2 = 1+
1
3
β2, κ3 = 1+ β2, κ4 = 1+ 2β2 +

1
5
β4, (A.16)

κ5 = 1+
10
3
β2 + β4, κ6 = 1+ 5β2 + 3β4 +

1
7
β6, κ7 = 1+ 7β2 + 7β4 + β6.

The first three terms of the expansion (A.14) are as follows: Function∆00

coincides withχ00, and functions∆01 and∆02 can be obtained using definitions
(1.27) and expansion (A.14). For∆01, we get

∆01=−β
∞
∑

l=0

(−2xγ)la0lζl+1≈−
β

3

[

1−4xγ+
78
5

(xγ)2

(

1+
β2

5

)]

, (A.17)

where

ζl =
κl+1 − κl

β2
=

int[(l−1)/2]
∑

k=0

2k + 2
(2k + 3)!

β2k l!
(l − 1− 2k)!

,

ζ1 =
1
3
, ζ2 =

2
3
, ζ3 = 1+

1
5
β2, ζ4 =

4
3
+

4
5
β2,

ζ5 =
5
3
+ 2β2 +

1
7
β4, ζ6 = 2+ 4β2 +

6
7
β4. (A.18)

Respectively for∆02, we have

∆02 = β
2
∞
∑

l=0

(−2xγ)l a0lΛl+1 ≈ −
4
15

β2(xγ)

(

1− 39
5

xγ

)

, (A.19)



178 APPENDIX A. COMPTON SCATTERING

where

Λl =
1

2β2

[

3
κl − 2κl+1 + κl+2

β2
− κl

]

=

int(l/2)
∑

k=1

l!
(l − 2k)!(2k)!

2k
(2k + 1)(2k + 3)

β2(k−1) ,

Λ1 = 0, Λ2 =
2
15
, Λ3 =

2
5
, Λ4 =

4
5
+

4
35
β2. (A.20)

Similarly, for functionsχ1n, using expansions (A.9) we get:

χ1n(x, γ) = γn+1
∞
∑

l=0

(−2xγ)l (γ A1l + x A2l) κn+l+2

= γn















γ2κ2+n +

∞
∑

l=1

(−2xγ)l
(

γ2 A1l κn+l+2 −
A2 l−1

2
κn+l+1

)















. (A.21)

Functions∆1n can then be obtained using definitions (1.50):

∆10 = χ10 ≈ 1+
4
3

p2 − xγ
5

(

42γ2 − 27− 2β2
)

,

∆11 = −p
∞
∑

l=0

(−2xγ)l (γ A1l + x A2l) ζl+2 ≈ −β
{

2
3
γ2 − xγ

5

[

21γ2(1+ β2/5)− 4
]

}

,

∆12 = pβ
∞
∑

l=0

(−2xγ)l (γ A1l + x A2l) Λl+2 ≈
2
15
β2

[

γ2 − 3xγ
5

(

21γ2 − 2
)

]

. (A.22)

For functionsχ2n, we can write the expansion

χ2n(x, γ) = γn
∞
∑

l=0

(−2xγ)l
[(

γ4A4l − γ2A7l

)

κn+l+3 − γ2A5l κn+l+2 + A6l κn+l+1

]

≈ γn

[

7
5
γ4κ3+n −

γ2

10
(3κ3+n + 2κ2+n) +

1
10
κ1+n

]

, (A.23)

where we kept only the zeroth term inxγ of the series. Expansions for∆2n can
then be obtained using definitions (1.50):

∆20 = χ20 ≈ 1+
2
15

p2
(

21γ2 + 4
)

,

∆21 = −β
∞
∑

l=0

(−2xγ)l
[(

γ4A4l − γ2A7l

)

ζl+3 − γ2A5l ζl+2 + A6l ζl+1

]

≈ −β
[

1+
2
75

p2
(

63γ2 + 34
)

]

,

∆22 = β
2
∞
∑

l=0

(−2xγ)l
[(

γ4A4l − γ2A7l

)

Λl+3 − γ2A5lΛl+2 + A6lΛl+1

]

≈ p2 1
75

(

42γ2 − 11
)

. (A.24)
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Let us now discuss the properties of functionsχ∗1n. The series expansion can
be easily obtained from the definition (1.89) and series (A.9):

χ∗1n(x, γ) = γn+2
∞
∑

l=0

(−2xγ)l A1l κn+l+3. (A.25)

For∆∗1k we get:

∆∗10 = χ∗10 ≈ γ2
(

1+ β2
)

,

∆∗11 = −γp
∞
∑

l=0

(−2xγ)l A1l ζl+3 ≈ −γp (1+ β2/5),

∆∗12 = p2
∞
∑

l=0

(−2xγ)l A1lΛl+3 ≈
2
5

p2. (A.26)

The series expansion for functionsχ⊥1n is:

χ⊥1n(x, γ) =
γn+1

p

∞
∑

l=0

(−2xγ)lA1l

(

κn+l+2 − 2γ2 κn+l+3 + γ
2κn+l+4

)

=
2
3
γn+1p

∞
∑

l=0

(−2xγ)lA1l

(

β2Λn+l+2 − κn+l+2

)

. (A.27)

For∆⊥1k we get:

∆⊥11 =
1
2
χ⊥10 ≈ −

1
3
γp (1+ β2/5), (A.28)

∆⊥12 =
1

2p
(

γχ⊥10 − χ⊥11

)

=
1
3

p2
∞
∑

l=0

(−2xγ)l A1l
[

Λl+2 − Λl+3 + ζl+2
] ≈ 2

15
p2.

A.5 Eliminating cancellations in redistribution func-
tions

If formulae (1.138), (1.139) and (1.140) are used as they stand, numerical can-
cellations appear at certain regions of parameter space. For example ifx and x1

are small, the quantitiesa− anda+, 1/a− and 1/a+, are close to each other. Also
a combination containing a sum ofd−/a3

− andd+/a3
+ minus double the difference

1/a− and 1/a+ has a cancellation. Therefore it is useful to rewrite the expres-
sions in a form not containing those cancellations. The cancellations appearing in
(1.138) were dealt with in Nagirner & Poutanen (1993). Defining

u = a+ − a− =
(x + x1)(2γ + x1 − x)

a− + a+
, v = a−a+, (A.29)
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they got

R0 =
2
Q
+

u
v

(

1− 2
q

)

+ u
(u2 − Q2)(u2 + 5v)

2q2v3
+ u

Q2

q2v2
. (A.30)

Using definitions (A.29), we get from (1.139) and (1.140)

RΣ = (a− + a+)

[

2u
Q3
+

1
v

(

1− 2
q

)

+
(u2 − Q2)(u2 + 3v)

2q2v3
+

Q2

q2v2

]

, (A.31)

RΠ =
1

2Q5

[

u2(u2 + 4v) + 2b2
]

+
1

2Q

(

1− 4
q

)

+
u

q2v
. (A.32)

Another loss of accuracy occurs in theu2−Q2 term, whenγ is close toγ∗(x, x1, µ).
We can use the following formulae (Nagirner & Poutanen 1993):

u2 − Q2 = 2rqCDu, Du = (γ + x1 − x + γ∗)(γ − γ∗),
C = 2/[γ(γ + x1 − x) + r + xx1µ + v]. (A.33)

A.6 Boundaries

The redistribution functionsR0,RΣ,RΠ and R1,R2 are defined within the inter-
val of photon and electron energies and scattering angles satisfying the relation
| cosθ| ≤ 1, where cosθ is given by equation (1.107). These limits were discussed
in Nagirner & Poutanen (1994), but we repeat them here for completeness. For
fixed photon energies and scattering angle, we already got the limits on the elec-
tron energies given by equation (1.110),γ ≥ γ∗(x, x1, µ). If we are interested in
the interval of scattered photon energies for the fixedx1, γ andµ, we have then
x− ≤ x ≤ x+, where

x±(x1, γ, µ) = x1
µ + γ(γ + x1)(1− µ) ± p (1− µ) a+

1+ 2γ x1 (1− µ) + x2
1 (1− µ)2

. (A.34)

If the energy of the scattered photonx is fixed, the initial photonx1 lies in the
interval

x−1 ≤ x1 ≤ x+1 if 0 ≤ x (1− µ) ≤ γ − p,
x1 > x−1 if γ − p ≤ x (1− µ) ≤ γ + p,

(A.35)

where

x±1 (x, γ, µ) = x
µ + γ(γ − x)(1− µ) ± p (1− µ) a−

1− 2γ x (1− µ) + x2 (1− µ)2
. (A.36)

In equations (A.34) and (A.36), the quantitiesa± are defined by equations (1.119).
If |x − x1| ≤ 2xx1, the quantityγ∗(x, x1, µ) as a function ofµ has a minimum

γmin = 1+ (x − x1 + |x − x1|)/2 (A.37)

at µ = µmin = 1 − |x − x1|/xx1, while in the opposite case,|x − x1| ≥ 2xx1, the
function is monotonic with the minimum reached at the boundary µ = −1 (see
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Figure A.1). Correspondingly, the limits of variations ofµ depend on the photon
energiesx, x1 and the electron energyγ and are given by

µm ≤ µ ≤ µ+, (A.38)

where

µm(x, x1, γ) =



















−1 if |x − x1| ≥ 2 x x1,

−1 if |x − x1| ≤ 2 x x1 andγ ≥ γ∗(x, x1,−1),
µ− if |x − x1| ≤ 2 x x1 andγmin ≤ γ ≤ γ∗(x, x1,−1),

µ−(x, x1, γ) = 1− q+
x x1

, (A.39)

µ+(x, x1, γ) = 1− q−
x x1
= 1− (x − x1)2

x x1 q+

and
q± = p2 + γ (x1 − x) ± p

√

(γ + x1 − x)2 − 1. (A.40)

The quantityγ⋆(x, x1,−1) is the minimum electron energy needed to scatter a
photon backwards (i.e.µ = −1) from x1 to x:

γ∗(x, x1,−1) =
[

x − x1 + (x + x1)
√

1+ 1/xx1

]

/2. (A.41)

For the angle-averaged redistribution function, the lowerlimit on the electron
energy is:

γ⋆(x, x1) =















γ∗(x, x1,−1) if |x − x1| ≥ 2 x x1,

γmin if |x − x1| ≤ 2 x x1.
(A.42)

The limits of variation of the scattered photon energyx as a function of incident
photon energyx1 andγ can be found by inverting equation (A.42). We obtain

x−(x1, γ) ≤ x ≤ xm(x1, γ), (A.43)

where

xm(x1, γ) =







































γ + x1 − 1 if 1 ≤ γ ≤ 1+
2x2

1

1− 2x1
and x1 < 1/2,

x+(x1, γ) if 1 +
2x2

1

1− 2x1
≤ γ and x1 < 1/2,

γ + x1 − 1 if x1 ≥ 1/2,

x±(x1, γ) = x1 (γ ± p) / (γ ∓ p + 2 x1) . (A.44)
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Figure A.1: The dependence of the functionγ∗(x, x1, µ) on µ. The energy of the
incident photon isx1 = 2. The solid curve is forx = 3, the dashed curve is for
x = 1 (both cases correspond to|x−x1| < 2xx1), and the dotted curve is forx = 0.3
(for which |x − x1| > 2xx1).
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A.7 Relation between the Compton redistribution
functions for photons and electrons

The redistribution functions defined by equations (5.18) and (5.26) can be written
as

Rph(x, x1, γ1) =
1

4π2
p1

∫

pdγd2Ωδ(γ1+x1−γ−x)
∫

d2Ω1d2ω1Fδ(p1+x1−p−x),

(A.45)

Re(γ, γ1, x1) =
1

4π2
x1

∫

xdxd2ωδ(γ1+x1−γ−x)
∫

d2Ω1d2ω1F δ(p1+x1− p−x).

(A.46)
We see that the inner integrals are identical in both expressions. Because of ro-
tational symmetry, the only angle left in the calculation after performing the in-
tegrals overd2Ω1d2ω1 is the angle between the momenta of outgoing particles.
Therefore we can writed2Ω = d2ω = 2πdζ, whereζ = Ω · ω. We also see that
dγ δ(γ1 + x1 − γ − x) = dx δ(γ1 + x1 − γ − x), so we find from equations (A.45)
and (A.46) that the redistribution functions are related as

pp1Re(γ, γ1, x1) = xx1Rph(x, x1, γ1), (A.47)

where one of the energies/momenta has to be replaced from the conditionx + γ =
x1 + γ1.

A.8 Isotropic Compton redistribution function

The isotropic Compton redistribution function defined in equation (5.18) can be
written as an integral over the scattering angle (Nagirner &Poutanen 1994)

Rph(x, x1, γ1) =
∫ µ+

µm

R(x, x1, γ1, µ) dµ = T (x, x1, γ1, µ)

∣

∣

∣

∣

∣

∣

µ+

µm

. (A.48)

The limits of integration are given by equations (A.39) in Section A.6, with γ
substituted byγ1.

The angle-dependent redistribution functionR(x, x1, γ1, µ) was first derived by
Aharonian & Atoyan (1981), see also Prasad et al. (1986) and Nagirner & Pouta-
nen (1993). Similar functions for anisotropic electrons were derived in Chapter 1.
The angle-averaged function was obtained by Jones (1968), but the presented ex-
pressions are very cumbersome and the loss of accuracy occurs for small photon
energies and large electron energies. An alternative function given by Brinkmann
(1984) and Nagirner & Poutanen (1994) does not suffer from these problems. We
use here the latter expressions. The primitive functionT (x, x1, γ1, µ) can be ex-
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pressed through functions of one argument as

T (x, x1, γ1, µ) = − 2
xx1

Q +

√

w
2

{

4
xx1

H0 + w

(

1+
1

xx1

)

H1

+
H

A(h−)A(h+)

[

w +
1

2x2x2
1

(

2
H2

w
− (x − x1)

2

)]}

, (A.49)

wherew = 1− µ andQ =
√

(x − x1)2 + 2xx1w. The functionsH are given by the
differences

H = A(h−) − A(h+), Hn = An(h−) − An(h+), (A.50)

where

A(h) =
√

1+ h, h+ = [(γ1 + x1)
2 − 1] w/2, h− = [(γ1 − x)2 − 1] w/2.

(A.51)

The zeroth functionA0 is

A0(h) =















ln(
√

h +
√

1+ h)/
√

h if h ≥ 0,

arcsin(
√
−h)/

√
−h if h ≤ 0,

(A.52)

while the others can be expressed through its derivatives as

An(h) = (−2)n
|2n − 1|

(2n − 1)!!
A(n)

0 (h), (A.53)

and can be computed by the recurrent relation

An+1(h) =
1
h

[

2n + 1
|2n − 1|An(h) − 1

A2n+1(h)

]

, (A.54)

or for |h| ≤ 1 via series

An(h) =
|2n − 1|

(2n − 1)!!

∞
∑

k=0

(2n + 2k − 1)!!
(2k)!!

(−h)k

2n + 2k + 1
. (A.55)

Direct computations using (A.50) lead to numerical cancellations at small photon
energiesx, x1 ≪ 1. Nagirner & Poutanen (1994) describe in details how they
should be dealt with.

A.9 Moments of the Compton redistribution func-
tion

The moments of the photon redistribution function given by equation (6.32) can
be written explicitly using equation (5.14) as

xi
1 s0(x) =

3
16π

2

λ3
CNe

1
x

∫

d3p
γ

d3p1

γ1

d3x1

x1
xi

1 ñe(p) F δ4, (A.56)
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where we have denotedδ4 = δ(p
1
+x1−p−x) for brevity. We now define (Nagirner

& Poutanen 1994)

〈xi
1〉 s0(ξ) =

3
16π

1
ξ

∫

d3x1

x1

d3p1

γ1
xi

1 F δ4 (A.57)

and

Ψi(x, γ) =
1

4πγxi+1

∫

d2Ω ξ 〈xi
1〉 s0(ξ), (A.58)

whereξ = p · x. Using equations (A.57) and (A.58), we get for equation (A.56)

xi
1 s0(x) = 4π

2

λ3
CNe

xi

∫

ñe(p) p2 dpΨi(x, γ). (A.59)

Analytical expressions forΨi along with asymptotic formulae for different lim-
iting cases can be found in Nagirner & Poutanen (1994). For calculating ẋc and
Dph(x) using equations (6.33) we need terms like(x1 − x)i s0(x), for i = 1, 2, which
are simply

(x1 − x) s0(x) = 4π
2

λ3
CNe

x
∫

ñe(p) p2 dp (Ψ1 − Ψ0), (A.60)

(x1 − x)2 s0(x) = 4π
2

λ3
CNe

x2

∫

ñe(p) p2 dp (Ψ2 − 2Ψ1 + Ψ0). (A.61)

We now rewrite the moments of the electron redistribution function given by
equation (6.17) using equation (5.22)

γi
1 s0(p) =

3
16π

2

λ3
CNph

1
γ

∫

d3x
x

d3x1

x1

d3p1

γ1
γi

1 ñph(x) F δ4. (A.62)

We can define quantities analogous to equations (A.57) and (A.58):

〈γi
1〉 s0(ξ) =

3
16π

1
ξ

∫

d3x1

x1

d3p1

γ1
γi

1 F δ4 (A.63)

and

Φi(x, γ) =
1

4πxγi+1

∫

d2ω ξ 〈γi
1〉 s0(ξ). (A.64)

Equation (A.62) then takes the form

γi
1 s0(p) = 4π

2

λ3
CNph

γi

∫

ñph(x) x2 dx Φi(x, γ), (A.65)

while the terms needed for calculating ˙γc andDe(γ) using equation (6.21) are

(γ1 − γ) s0(p) = 4π
2

λ3
CNph

γ

∫

ñph(x) x2 dx (Φ1 − Φ0), (A.66)

(γ1 − γ)2 s0(p) = 4π
2

λ3
CNph

γ2

∫

ñph(x) x2 dx (Φ2 − 2Φ1 + Φ0). (A.67)
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From considerations of energy conservation one would expect a relation be-
tween the rates (A.60), (A.61) and (A.66), (A.67). To see this, consider the quan-
tities x (Ψ1 −Ψ0) andγ (Φ1 −Φ0) entering equations (A.60) and (A.66):

x (Ψ1 − Ψ0) =
1

4πγx

∫

d2Ω ξ 〈x1 − x〉s0(ξ), (A.68)

where

〈x1 − x〉 s0(ξ) =
3

16π
1
ξ

∫

d3x1

x1

d3p1

γ1
(x1 − x) F δ4. (A.69)

Analogously for electrons

γ (Φ1 − Φ0) =
1

4πxγ

∫

d2ω ξ 〈γ1 − γ〉 s0(ξ), (A.70)

〈γ1 − γ〉 s0(ξ) =
3

16π
1
ξ

∫

d3x1

x1

d3p1

γ1
(γ1 − γ) F δ4. (A.71)

Due to the energy conservationδ-function,x1 − x = γ − γ1, and we thus get

〈x1 − x〉 s0(ξ) = −〈γ1 − γ〉 s0(ξ). (A.72)

Also, after performing the integrals overd3x1 d3p1 in equations (A.69) and (A.71)
the only remaining angle that〈x1 − x〉s0(ξ) and 〈γ1 − γ〉s0(ξ) can depend on is
the one between the incoming photon and electron momenta. Therefore in equa-
tions (A.68) and (A.70) we can writed2Ω = d2ω = 2πdζ, ζ = Ω ·ω and conclude
that

x (Ψ1 −Ψ0) = −γ (Φ1 − Φ0). (A.73)

Using the same arguments one can show that

x2 (Ψ2 − 2Ψ1 + Ψ0) = γ
2 (Φ2 − 2Φ1 + Φ0). (A.74)

We can thus use the analytic expressions forΨi for calculating the rates ˙γc and
De(γ) for electrons as well as photons. Note that sinceΨ0 = Φ0 we also have
analytic expressions for calculating the total scatteringcross-section for electrons
through equation (A.65), settingi = 0.
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