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Abstract

Neutron stars are one of the most dense objects in the Universe. However, the ex-
act description of the equation of state (EoS) of the cold ultra-dense matter inside
them is still a mystery. In this thesis, we measure the size of some neutron stars us-
ing astrophysical observations of X-ray bursts that are produced by thermonuclear
runaways in the uppermost layers of the star. By measuring the size, we can then
set constraints on the nuclear physics of the interiors and ultimately on the EoS of
the cold dense matter.

The size measurements are done by comparing the cooling of the neutron star
surfaces after the bursts to theoretical atmosphere model calculations. Hence, ac-
curate modeling of the emergent radiation from the atmospheres is needed. In the
first part of this thesis, I have studied how the emergent spectra differ if the at-
mosphere is enriched with nuclear burning ashes from the bursts. This gives us
new tools to understand and interpret the X-ray burst observations. In addition, I
have shown how the emerging radiation is modified when it originates from rapidly
rotating oblate neutron stars.

Furthermore, we must also be careful in selecting only those bursts that are
not influenced by the infalling material. In the second part of the thesis, I have
focused on studying the astrophysical environments of the X-ray bursts in order to
quantify the effect of accretion on the mass and radius measurements. Importantly,
it is shown that only the bursts that occur during the low-accretion-rate (hard) state
can be used for the size determination because otherwise the accretion flow might
influence the cooling of the stellar surface.

After taking these steps into account, it is possible to set constraints on the
mass, radius, distance, and atmosphere composition of neutron stars exhibiting X-
ray bursts. In the third part of the thesis, I have used the aforementioned models
and methods to constrain the mass and radius of neutron stars using the hard state
X-ray bursts. The method has been applied to three neutrons stars in low-mass
X-ray binary systems 4U 1702−429, 4U 1724−307, and SAX J1810.8−260 for
which the radius is measured to be between 10.9 − 12.4 km (68% credibility).
The newly computed atmosphere models have also been used to detect a presence
of burning ashes in the atmosphere of the neutron star in HETE J1900.1−2455.
Later on, an improved Bayesian method of fitting the atmosphere models directly
to the observed spectra has also improved the radius constraints of 4U 1702−429
to R = 12.4 ± 0.4 km (68% credibility). These results are in a good agreement
with the current nuclear physical predictions and demonstrate how astrophysical
measurements can be used to gauge the unknown nuclear physics of neutron stars.
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Tiivistelmä

Neutronitähdet ovat universumimme tiheimpiä tähtiä. Niiden sisältämän erittäin
tiheän kylmän aineen tilanyhtälö ja tarkka käyttäytyminen ovat kuitenkin vielä
tuntemattomia. Tässä väitöskirjassa näytän kuinka kaukaisenkin neutronitähden
koko voidaan mitata hyödyntäen niin kutsuttujen röntgenpurkausten lähettämää
säteilyä. Röntenpurkaukset saavat alkunsa termisestä fuusioreaktiosta joka tuottaa
valtaisan räjähdyksen tähden pintakerroksissa. Mittaamalla ja mallintamalla näistä
purkauksista syntyvää säteilyä, saamme tietoa neutronitähtien sisältämän aineen
käyttäytymisestä ja siten myös kylmän tiheän aineen tilanyhtälöstä.

Mittaukset tehdään vertaamalla neutronitähtien pinnalta alkunsa saavaa säteilyä
teoreettisiin ilmakehämalleihin jotka ennustavat kuinka pinnan tulisi jäähtyä pur-
kausten jälkeen. Tämän takia tarvitsemme tarkkoja malleja säteilyn kulusta ilma-
kehässä. Ensimmäisessä osassa väitöskirjaani olen tutkinut kuinka ilmakehässä
olevat raskaat fuusioreaktioissa syntyneet alkuaineet vaikuttavat tämän säteilyn
etenemiseen ilmakehän plasmassa. Tämä auttaa meitä ymmärtämään ja tulkitse-
maan myös röntgenpurkauksista tehtyjä havaintoja. Lisäksi olen näyttänyt kuinka
havaittu säteily muuttuu, kun se saa alkunsa erittäin nopeasti pyörivästä ja navoil-
taan litistyneestä neutronitähdestä.

Tarkkojen ilmakehämallien lisäksi meidän täytyy myös ymmärtää mitä neutro-
nitähden ympärillä tapahtuu. Väitöskirjani toisessa osassa tutkin kuinka ympäristö
voi vaikuttaa herkkiin tähden säteen mittauksiin, koska joskus neutronitähden pin-
nalle putoava materia voi häiritä mittauksia. Tärkein löydöksemme on, että säteen
luotettavaan mittaamiseen voidaan käyttää vain sellaisia purkauksia, jotka tapah-
tuvat kun putoavaa materiaa on erittäin vähän.

Kun edellä mainitut seikat huomioidaan on mahdollista mitata neutronitähden
koko, etäisyys, ja ilmakehän koostumus vertaamalla oikeiden, havaittujen rönt-
genpurkausten jäähtymistä mallien ennusteisiin. Viimeisessä osassa väitöskirjaani
olen tutkinut kolmen eri neutronitähden röntgenpurkausten säteilyä. Kyseiset neut-
ronitähdet sijaitsevat kaksoistähtijärjestelmissä 4U 1702−429, 4U 1724−307, ja
SAX J1810.8−260. Kyseisten neutronitähtien säde on mittauksieni mukaan 10.9
ja 12.4 km välillä (68% luottamustaso). Uusien ilmakehämallien avulla olem-
me myös todistaneet, että kaksoistähtijärjestelmässä HETE J1900.1−2455 sijait-
sevan neutronitähden pintakerrokset sisältävät fuusioreaktion aikana syntyneitä
raskaita alkuaineita. Kehitin myös uudenlaisen Bayesilaisen metodin, jossa ilma-
kehämalleja voidaan sovittaa suoraan röntgenpurkauksista tehtyihin havaintoihin.
Tätä metodia käyttäen mittasin 4U 1724−429:ssä sijaitsevan neutronitähden sä-
teeksi R = 12.4±0.4 km (68% luottamustaso). Nämä uudet tulokset ovat sopusoin-
nussa uusien ydinfysikaalisten ennusteiden kanssa. Lisäksi ne näyttävät kuinka
astrofysikaalisia mittauksia voidaan käyttää apuna ydinfysiikan tutkimuksessa.
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1 Introduction

Neutron stars are curious objects encompassing many problems of modern physics
and astrophysics still unsolved. Their unique nature makes them ideal laboratories
for many of the most energetic phenomena in space. Born from the ashes of a
supernova, they begin their life only when a normal star fades away and dies in a
spectacular explosion.From there on, they continue their life by slowly collecting
the surrounding interstellar matter or by devouring an unlucky companion star
located next to them. It is not the ∼1030 kilograms they weigh but the sphere mere
∼10 km in radius that they encapsulate this material into that is then able to bend
spacetime itself. Such an impressive feat award them a categorization of a special
stellar group called compact objects. Along with white dwarfs and black holes,
these strange compact objects have been under scientific scrutiny for almost nine
decades. Still, one fundamental question remains: What are neutron stars made
of?

In the next few sections, we will discuss these peculiar objects habitating the
space around us in detail. First, a short history of their discovery is given, followed
by simple physical arguments on why we actually expect them to exist in the first
place. This will hopefully help us in building some intuition about physical phe-
nomena possible near and inside these stars.

1.1 Short history

1.1.1 From imagination to reality

In 1908, Lev Landau was born in Baku, Azerbaijan. Landau turned out to become
a brilliant Soviet scientist, who already at the age of 14 matriculated at the Baku
State University studying simultaneously in both the Department of Physics and
Mathematics and the Department of Chemistry. Soon after, he became disinter-
ested in chemistry but continued to be fascinated by physics throughout his whole
career. In 1931, at the age of 23, Landau published an exceptional paper where he
speculated on the existence of stars containing matter at nuclear densities:[1]

...the density of matter becomes so great that atomic nuclei come in
close contact, forming one gigantic nucleus.

What made this paper exceptional was that it was written before the existence
of neutrons was confirmed. For contemporary science, this meant a violation of
quantum mechanics, since atoms were thought to consist of protons and electrons

1



Chapter 1: Introduction

only, and they certainly could not exist together in the same place inside such a
hypothetical star. Nevertheless, it marked the first theoretical speculation on the
existence of what we now know as neutron stars.

Landau needed not wait for long. Already next year, in 1932, James Chadwick
confirmed that neutrons really were a fundamental part of our nuclear physics with
his works dubbed Possible Existence of a Neutron[2] and the follow-up Existence
of a Neutron[3]. His experimental findings then confirmed the theoretical predic-
tions his supervisor Ernest Rutherford made already in 1920[4]. Later on, in 1935,
Chadwick was awarded the Nobel Prize in Physics for his findings. Chadwick him-
self continued his career as part of the Manhattan project, as it was basically his
groundbreaking work that inspired the U.S. government to begin serious research
into the atomic bomb.

Now that the existence of the neutron was confirmed, it did not take long for
others, independent of Landau, to propose similar stars. At the Meeting of the
American Physical Society at Standford in December 1933, one year after the
neutron discovery, Wilhelm Baade and Frank Zwicky made their famous proposal
that Supernovae should be considered a new category of astronomical objects.[5,6]

At the same time, they also stated:

...we advance the view that a super-nova represents the transition of
an ordinary star into a neutron star, consisting mainly of neutrons.
Such a star may possess a very small radius and an extremely high
density.

Such statements were, however, deemed a work of imagination by a bunch of
weird astronomers. Zwicky, on the other hand, kept on insisting that neutron stars
really are out there. Much later on, A.G.W. Cameron, a former post-doc at Caltech
(where Zwicky was also situated) during 1959−1969, recalls:

For years Fritz [Zwicky] had been pushing his ideas about neutron
stars to anyone who would listen and had been universally ignored. I
believe that the part of the problem was his personality, which implied
strongly that people were idiots if they did not believe in neutron stars.
(A.G.W. Cameron, 1999)

Progress on the theoretical understanding of neutron stars was also tightly con-
nected to understanding the interiors of white dwarfs. Unlike the mysterious nu-
clear forces related to neutrons, the physics of white dwarfs was more related to
understanding the behavior of electrons. A breakthrough in this field came in
1925, when a young Paul Dirac formulated the quantum wave equations for the
motion of electrons[7]. What soon followed was a description of the pressure of
degenerate electron gas by Ralph Fowler, Dirac’s supervisor[8]. The implications
were severely against the previously known physics; even in zero temperature,
there would be a degeneracy pressure preventing matter from collapsing due to the
exclusion principle of quantum mechanics.

2



1.1 Short history

Using a simplified uniform density approximation, Edmund Stoner was then
able to show that this implied a maximum mass limit for white dwarfs.[9] Thus, a
surprising result was obtained: when the density of a white dwarf approaches infin-
ity, the mass reaches a maximum value. The German-Estonian Wilhelm Anderson
later realized that the electrons in this problem must actually be treated relativis-
tically[10], something overlooked by Stoner. Anderson tried to correct the crude
mistake by deriving the equation of the state of relativistic degenerate electron gas
but ended up making severe mistakes. It was Stoner who corrected his equations
based on communication with Anderson and re-derived his maximum mass limit.
Regardless of Stoner’s efforts, it was later named Chandrasekhar’s mass limit for
its importance in astrophysics.

This was to honor Subrahmanyan Chandrasekhar, a young and prolific Indian
physicist and astrophysicist, who was working on the same topic after reading
Fowler’s paper on degenerate electron gas. Unlike Stoner’s limit computed using
the uniform density approximation, Chandrasekhar realized that a polytropic den-
sity profile is a more physical albeit mathematically more challenging formulation.
Still, the 19-year-old Chandrasekhar, already known for his mathematical prowess,
was able to integrate the equations numerically by hand and obtained a similar lim-
iting mass[11]. Later on, however, it has been found that Chandrasekhar was not
even the second person to derive the mass limit, but the third:[12] the Soviet physi-
cist Yakov Frenkel published a similar derivation, independently and unknowingly
of the progress in the west, in which he applied the relativistic degenerate electron
gas results to white dwarfs and concluded that an upper limit on the mass must
exist[13]. However, his work went by unnoticed.

Nevertheless, the maximum mass for a white dwarf had been laid out, and in
the end, after all the relevant physical inclusions, it turned out to be 1.44 M�, or
1.44 times the mass of our Sun. What makes this limit important for us, is that the
maximum mass for a white dwarf is related to the minimum mass for a neutron
star, an important connection first made by George Gamow in 1939[14]. The idea
behind it is simple: if the degenerate electron gas pressure, quantum mechanical
in nature, is what keeps the white dwarfs from collapsing, what happens when the
maximum mass is reached and even this strange pressure is unable to resist the
forces of gravity? At a conference in Paris in 1939, Chandrasekhar laid out the
answer:

If the degenerate core attains sufficiently high densities, the protons
and electrons will combine to form neutrons. This would cause a sud-
den diminution of pressure resulting in the collapse of the star to a
neutron core.

A neutron star should thus have a mass smaller than the Chandrasekhar limit, i.e.
M ∼ 1.44 M�, and consist of neutrons only, exactly like proposed by Landau eight
years earlier without the knowledge of neutrons, or later on by Baade and Zwicky
when they presented their theory of supernovae!

It was before the Second World War that a solid basis for a theory of neutron

3



Chapter 1: Introduction

stars was established. This was, however, just the beginning. The next question
would be the critical one that we are still trying to answer today: if they exist, how
big are they? The problem was that because of the extremely dense nature of these
objects, the classical stellar equilibrium equations were no longer valid, and thus
it was not possible to even estimate the size of a neutron star. The problem was
unwieldy due to its general relativistic nature; the immense mass of the neutron
star was bending spacetime itself, and the more compact it was, the more it could
bend it. On the other hand, the more curved spacetime was, the more the star
would gain weight and the more compact it would become.

It was already during the same year as Gamow’s remark, in 1939, that a theoret-
ical framework for studying this problem was published. This was done indepen-
dently by Richard Tolman[15] and Robert Oppenheimer together with his student
George Volkoff[16]. Both papers were even submitted on the same day, the 3rd
of January, to Physical Review and were published on the same February issue.
More importantly, they both described a hydrostatic equilibrium for a spherically
symmetric object in general relativity, exactly what was needed to study neutron
stars. Because of its great importance, the solution is now known as the Tolman-
Oppenheimer-Volkoff equation. In addition, Oppenheimer and Volkoff applied
their equation and numerically calculated the structure of a neutron star consisting
of non-interacting strongly degenerate neutron gas. This marked the very first at-
tempt in characterizing neutron stars. Similar to white dwarfs, they also obtained
an upper limit for their mass. However, as a disappointment for everyone, it was
calculated to be around 0.7 M�, i.e. less than the Chandrasekhar limit of 1.44 M�
for white dwarfs, indicating that neutron stars could not exist in nature. It took
almost two more decades to show that it was actually the assumption of no inter-
action between the neutrons that was causing this hiccup.

Moreover, it was actually not Tolman nor Oppenheimer and Volkoff who first
discovered the general relativistic hydrostatic equation. It was now Chandrasekhar’s
turn to avoid having an important result credited to him; together with John Von
Neumann, Chandrasekhar extended his work on white dwarfs to also cover neutron
stars and in the process derived exactly the same equilibrium equation in 1934,
five years before the groundbreaking publication of Tolman, Oppenheimer and
Volkoff.[17] It is, however, worth mentioning that later on, in 1983, Chandrasekhar
received the Nobel Prize in Physics for his work on “theoretical studies of the
physical processes of importance to the structure and evolution of the stars”. So
he certainly received at least some credit for his important work.

Around the same time, in 1937, Gamow and Landau also independently pro-
posed that the accretion of matter onto a dense neutron star core could be the
missing source of energy for stars. This increased the interest towards neutron
stars, and the field flourished in the 1930s. However, it was soon shown that stars
are powered not by accretion but by thermonuclear reactions as first suggested in
the 1920s by Sir Arthur S. Eddington.[18] The interest in neutron stars then faded
away and the research focused on weaponizing the nuclear forces.

The next big breakthrough came almost 20 years later in the 1950s, when
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1.1 Short history

John Wheeler and his collaborators constructed the first realistic equation of the
state of dense matter[19]. For the outer layers, known as the crust, they applied
a semi-empirical mass formula together with the equation of the state of degen-
erate electrons. For the dense core, they assumed a mixture of three ideal Fermi
gases composed of neutrons, protons, and electrons. This marked the first con-
sistent formulation of neutron star structure. It was followed by Cameron, who
applied the Skyrme equation of state for the high-density matter.[20] This had im-
portant implications, as he was then able to show that the nuclear forces stiffen the
matter considerably in comparison to the non-interacting free neutrons. Similar to
Tolman and Volkoff, he then went to calculate the maximum possible mass of a
neutron star and arrived at approximately 2 M�. This was an important theoretical
breakthrough as it implied that neutron stars can, after all, exist. A new wave of
interest towards neutron stars was thus launched as everybody wanted to observe
them.

1.1.2 Many observational faces of neutron stars

After Wheeler and Cameron had laid the modern foundation for studies on neu-
tron star structure, everyone was eager to find these strange objects in the night
sky. It did not take long before researchers realized that as neutron stars are born
in the supernova explosions, we expect them to be hot. Most of the theoretical
effort in the 60s was then focused on developing models for the cooling of neutron
stars.[21–27] It was the potential thermal radiation from this cooling that could then
be used to detect them, as was first shown by Hong-Yee Chiu[22]. The first calcula-
tions predicted surface temperatures of T ∼ 106 K for a neutron star of the age of
around 1000 years. This had important implications for the observers as it meant
that neutron stars would mainly radiate in the range of X-rays. The atmosphere of
Earth, on the other hand, was impenetrable to the X-ray wavelengths. Luckily, the
60s also marked the beginning of a golden era for spaceborn observatories.

Since X-rays could not reach the surface of the Earth, humankind went into
space to observe them. In the late 1950s and early 1960s, it was the pioneering
experiments of the Italian-American astrophysicist Riccardo Giacconi that opened
this new window into the Universe. Giacconi first started with rocket-borne exper-
iments and later continued by leading the development of the first orbiting X-ray
satellite Uhuru, “freedom” in Swahili.[28] After the first X-ray satellite, Giacconi
continued with the Einstein Observatory, the first fully imaging X-ray satellite, and
later with the Chandra X-ray observatory. For all of his efforts, he received the No-
bel Prize in Physics in 2002 “for pioneering contributions to astrophysics, which
have led to the discovery of cosmic X-ray sources”.

During the starting boom, several extra-terrestrial X-ray sources were discov-
ered. As is common in science, the first discovery actually came by accident. A
team led by Giacconi launched an Aerobee 150 rocket to the skies in June 1962
with a payload of a highly sensitive soft X-ray detector meant to observe the X-rays
from the Moon. Due to a slight change (or a mistake) in the planned trajectory, it
ended up observing the constellation of Scorpius and caught a glimpse of what is
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now known as the first extraterrestrial X-ray source, Sco X-1. Little did they know
that this was actually the first neutron star radiating towards us. Five years later,
in 1967, Iosif Shklovsky was the first to propose that Scorpius X-1 is a neutron
star[29], but his work attracted little to no attention.

The first deliberate searches of neutron stars were aimed at the Crab Nebula, a
well-known candidate for hosting a neutron star. The Crab Nebula, already known
in the 1920s and 1930s to be a supernova remnant is known to have exploded
exactly on the 4th of July, 1054.[30–33] In contemporary Chinese, Japanese, and
Arab history writings, a “guest star” is described to appear in the constellation of
Taurus and to persist even in broad daylight for 23 consecutive days. Even after
that, it remained visible in the night sky for two years. For astronomers, this was a
clear sign of a nearby supernova going off.

But it was not only the spectacular supernova but what was left behind that
eluded astronomers. Already in 1942, our old friends Baade and Rudolf Minkowski
correctly found that the center of the Crab Nebula contained an unusual star.[34,35]

In the following years, the mystery gained depth when a radio emission was also
detected.[36] This gathered a lot of interest from the theorists, as they were try-
ing to explain the origin of the energy powering the nebula. In 1953, Shklovsky
was on the right track again when he predicted that the emission is due to syn-
chrotron radiation from relativistic electrons spiraling along magnetic field lines.
His predictions were further strengthened in the next year 1954, when Victor Dom-
brovsky discovered that the optical radiation from the Crab nebula is polarized,[37]

as it should be if the radiation originates from synchrotron process. The next
piece of the puzzle came in 1964, when Lodewijk Woltjer, who did his PhD on
the Crab Nebula, argued, based on the conservation of magnetic flux, that neu-
tron stars should have a strong magnetic field, enough to produce this synchrotron
radiation.[38] Similar results were independently obtained in the East by Vitaly
Ginzburg.[39]

Early X-ray telescopes of the time had a very poor angular resolution, so imag-
ing the Crab Nebula to get an answer to the puzzle was difficult. The first observa-
tion in 1964 by S. Bowyer et al. used a clever method of partial lunar occultation
to cover unwanted parts of the sky with the Moon, and what followed was the first
X-ray observation of the neutron star candidate everybody was waiting for.[40] It
was, however, followed by a disappointment when a follow-up observation mea-
sured the source size to be about 1 light-year in size (1013 km) in comparison to the
11 light-years of the whole nebula.[41] The result was much larger than what was
expected for a neutron star that should be a mere ∼10 km in radius. Ironically, what
they did not know was that this was just as expected; for young neutron stars like
the one in the Crab Nebula, a pulsar wind (consisting of charged particles similar
to solar wind) is expected. This wind will then create a surrounding shell called a
plerion, much bigger in size, around the neutron star, and this shell is the source
of the X-rays. Hence, the mystery remained even though Nikolai Kardashev in the
East and Franco Pacini in the West gave plausible pioneering explanations for the
formation of the wind in 1964 and 1967, respectively.[42,43]
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Despite all the efforts (and partly due to bad luck), no concrete observations
supporting the existence of neutron stars still existed. This all changed in July
1967, in the farmlands near Cambridge. There, a pasture was filled with a prim-
itive antenna consisting of wires hanging from stakes — a state-of-the-art radio
antenna of those times. The idea was to use this newly build radio telescope
to study interplanetary scintillation that could help in resolving quasars, another
form of compact objects powered by black holes, from extended sources in the
sky. Among several other students who were working for Anthony Hewish was a
young PhD student named Jocelyn Bell. In addition to the signal from the scintilla-
tion, she discovered a deviation on her chart-recorded papers; an extremely regular
signal with a period of 1.3373012 seconds caught Bell’s attention. Originally, this
was dubbed (partially as a joke) Little Green Men 1 (LGM-1). In reality, what
they were seeing, Bell quickly realized, was the first pulsar, a rapidly rotating neu-
tron star whose radio emission beam sometimes points towards us, like a distant
lighthouse. More Little Green Men quickly followed, and by the end of the year
1968, dozens of LGMs were known. The finding was later published in the Na-
ture of 1968 by Hewish et al.[44] Hewish’s announcement was quickly followed by
more than 100 papers on pulsars, speculating the possible origin of the signal. The
winning argument came from Timothy Gold, who showed that pulsars are strongly
magnetized rapidly rotating neutron stars.[45] However, one should not forget the
similar seminal theoretical paper already made in 1967, before the discovery, by
Pacini.[43] More proof came when our old friend the Crab Nebula was shown to
host a pulsar rotating at a period of merely 33 milliseconds.[46] Anything but a
neutron star would be destroyed by the centrifugal forces from such rotation.

The finding of Bell and Hewish was sensational and marked the first detection
of a neutron star, almost 40 years after the theoretical speculation by Landau. Later
on, Hewish was awarded the Nobel Prize in Physics in 1974 ”for the discovery of
pulsars”, a somewhat unfair recognition taken into account that it was Bell who
found them in practice. Hence, despite all the efforts in X-ray astronomy, the
concluding evidence finally came from the radio wavelengths.

One should not, however, feel sorry for the X-ray astronomers, as they got their
fair share of neutron-star-related revelations during the next decade. Important
discoveries especially for studying the nature of accretion, or how matter infalls
onto a compact object, came from the first long-duration observations done with
the Dutch astronomy satellite ANS. As a direct competitor for the European ANS,
the U.S. funded Los Alamos National Laboratory nuclear research center was also
in the game of observing X-rays from compact objects. Their Vela satellites were
sent to space mostly to monitor the compliance of the 1963 Partial Test Ban Treaty
of nuclear weapons but they were used for science, too. In 1975, the ANS satellite
was commissioned to study possible black holes in the center of globular clusters
but happened to stumble upon something completely different; Short, ∼60-second-
long X-ray flares were detected from the globular cluster NGC 6624 by Grindlay
and Heise.[47] The competing Los Alamos group found similar energetic bursts,
but due to the poor angular resolution (collecting X-rays from the Earth was easy
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and hence no effort was put in for a good spatial accuracy), they could not pin
point the exact location of the sources.[48] Later on, Clark et al. went through
the existing SAS-3 data from May 1975 and found a series of ten similar bursts
from the same location, NGC 6624.[49] Even more retrospectively, it turned out
that these strange flares had already been observed in 1969 from Cen X-4[50] with
another Vela satellite and in 1971 with the Soviet Kosmos 428 X-ray detector[51].
Their nature, however, remained elusive.

Pioneering theoretical work on thermonuclear instabilities on the surface lay-
ers of accreting neutron stars was initiated by Hansen and van Horn in 1975.[52]

They constructed stationary burning shells to lay on top of neutron stars but instead
found out that most of them were actually unstable. The choice of word, unstable,
might not convey the full weight of the physical issue though; such a layer on top
of the surface of a neutron star burning uncontrollably meant a spectacular fire-
work. Shortly after the Los Alamos results came in, an Italian astrophysicist Laura
Maraschi was able to connect the dots while visiting MIT in February 1976 and
speculated that these recently observed X-ray bursts were due to thermonuclear
flashes on the surface of accreting neutron stars.[53,54] Woosley and Taam con-
cluded similarly in their 1976 paper titled “Gamma-ray bursts from thermonuclear
explosions on neutron stars”.[55] Observational evidence soon followed when van
Paradijs et al. and Thorstensen et al. were independently able to optically resolve
the companions of two known bursting sources, Cen X-4[56] and Aql X-1[57]. Not
only did these observations confirm that there is a companion star close by but also
that it must be within such a close distance of the neutron star that accretion, i.e. a
constant flow of new fuel for the explosions, can exist.

All of the aforementioned discoveries were, however, nothing but a prelude to
what was discovered in the years to follow. We will end this short historical re-
view by listing some of the most important more modern findings. A big revelation
came in 1979 when a very intense burst of gamma rays was detected by two So-
viet satellites, Venera 11 and Venera 12.[58] Later dubbed Soft Gamma Repeaters
(SGRs), their energy source remained mysterious for decades. A theoretical break-
through came in 1992 when Robert Duncan and Chistropher Thompson showed
that the bursts, orders of magnitude stronger than the X-ray bursts, could originate
from a neutron star with a magnetic field 100 to 1000 times more powerful than
what was previously known.[59] Today, these neutron stars are more commonly
known as magnetars, a subclass of young neutron stars where the initial magnetic
field has been amplified by delicate dynamo processes during the supernova explo-
sion. Another surprise came in 1982, when a team led by Donald Backer changed
how we look at pulsars when, using the world’s largest radiotelescope in Arecibo,
they found a pulsar spinning 641 times per second.[60] This new neutron star was
dubbed a millisecond pulsar, and unlike its predesessors, we now know that instead
of slowly decreasing in spin, it belongs to a class of old pulsars that have been spun
up by the accretion. In 2000, our understanding of the thermonuclear X-ray bursts
was also changed when Cornelisse observed a very long, not minutes but hours
long, burst from a neutron star normally exhibiting regular short bursts.[61] These
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were then dubbed as superbursts, in contrast to normal ones. The reason for this
difference is, we think, the burning material; normal bursts use hydrogen and he-
lium as their fuel but superbursts can devour a carbon shell in a matter of hours if
the conditions are just right.

1.2 From first principles to a neutron star

1.2.1 Background: Sun and stars

First, let us see what we can learn from neutron stars using simple estimates and
conservation laws. Neutron stars are born from the death of a normal star. The
most familiar one to us is our Sun, one Astronomical Unit or about 1.496×1013 cm
away from us.With a mass of M� = 1.99 × 1033 g and a radius of R� = 6.96 ×
1010 cm, our Sun gives us an idea of the typical stellar scale. Curiously, these
numbers also mean that the mean density of the Sun is ρ� ≈ 1.41 g cm−3, only
1.4× the density of water.

Like all stars, our Sun is held together by the inward-pulling gravity. Gravity
does not prefer any direction more than another, and so a spherical object is ex-
pected to form. In addition to the inward-facing force, an outward-facing force is
needed to balance the system. For normal stars this force originates from thermal
gas pressure.

We observe stars in the night sky because they shine. This radiation originates
from the thermonuclear fusion reactions inside the star. Thermo here refers to the
temperature and heat, nuclear to the atomic nuclei, and fusion to a process where
elements are fused together. During the thermonuclear fusion process, the star’s
core fuses light elements such as hydrogen into heavier ones like helium. The
mass of four hydrogen atoms is more than a mass of one helium atom. This mass
difference between the start and the end results is then transferred into energy in
accordance to Einstein’s famous E = mc2 formula. A whole sequence of such
fusion processes takes place inside the star, where lighter elements are merged
together to build heavier and heavier elements. The energy release from this mass-
to-energy conversion will then give the star a sufficient thermal pressure support to
keep it from collapsing under the relentless gravity trying to squash it.

The fusion of elements does not continue forever. In the beginning, four pro-
tons collide to form an alpha particle∗ In the next stage, three helium nuclei collide
to form carbon, and so on, until iron is created. Production of iron marks the end of
the possible fusion chain, since the fusion of two iron atoms no longer releases en-
ergy. On the contrary, it requires external energy to take place.† This iron produced
will then form a dead core without any energy output.

Like all big furnaces, at some point the star will run out of fuel to burn. What is
left behind is an inner core of iron with subsequent onion-like layers of lighter and
lighter elements. The crucial question to ask next is: what is supporting this iron

∗Alpha particle consists of two protons and two neutrons, i.e., doubly ionized helium nuclei.
†This opens up another possibility of creating energy by splitting heavy elements, an inverse

process to what is described here. Such a process is called fission and is familiarly taken advantage
of in Earth’s nuclear power plants.
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core now that the thermal gas pressure from the fusion process is lost? This was
the question that led scientists like Chandrasekhar to the realization of degenerate
matter and white dwarf stars in the 1920s.

1.2.2 White dwarfs and quantum mechanics

The answer lies in the elusive quantum mechanics. When the atoms inside matter
are packed close enough together, we need to apply wave-like characteristics for
them instead of classical point-like thinking. Because of their smaller mass, the
electrons orbiting the nuclei enter the realm of quantum mechanics first, in com-
parison to the heavier protons and neutrons in the atomic core. A freely moving
electron confined into a small enough space because of its surrounding neighbors
will start to attain only some fixed values of momenta. In physics, we speak about
the quantization of energy levels. The reason for this is similar to a vibrating string
of a guitar; a string fixed from both ends can only vibrate on some specific wave
modes that are set by its length. An additional complication for the electrons is
set by the Pauli exclusion principle, which forbids more than one electron to oc-
cupy the same wave mode or quantum state inside the same region. This gives rise
to a degeneracy pressure as electrons fill their quantum states from the lowest to
the highest, and can thus not be packed any tighter together. A star held together
by this degeneracy pressure of its electrons is known as a white dwarf. From this
setup, it only takes a short step into realizing the existence of neutron stars, because
we can, once again, push forward and ask: what next?∗

1.2.3 Neutron stars, at last

What if, at some point, even these quantum effects of the electrons are not enough
to support the star? One does not need to worry, since after the lightweight elec-
trons have given all they can, it is the heavy neutrons that slowly start to enter the
quantum mechanical realm. In practice, the matter will turn into a one big team
of neutrons because when the positive (+) central proton and the surrounding neg-
ative (−) electron come in contact, a neutral neutron is created.† The degeneracy
pressure of such a neutron porridge is multiple orders of magnitude larger than
what the electrons can offer, yielding an ultimate solution to the pressure support
problem.

Let us consider the consequences of this thought experiment. More detailed
calculations show that the resulting iron core sitting at the center of the star is
weighing a maximum of around ∼M�.‡ Hence, there are Mcore/matom ∼ M�/mp ≈

1.99 × 1033 g/1.67 × 10−24 g ∼ 1057 atoms trapped inside the core. § Here we are

∗The reader can be assured that the chain of thermal pressure → charge repulsion → electron
degeneracy will come to a halt as the final neutron degeneracy really is the last possible supporting
force in nature (maybe excluding quark degeneracy pressure)

†In reality, the beta decay formula is e− + p = n + ν̄e, where the additional electron anti-neutrino
is needed to preserve the quark color neutrality.

‡This is quite a reasonable-sounding assumption considering that the stars that explode are
around ∼10 M� in size and we certainly do not expect everything to fall into the core.

§The mass of the atom, matom = mp + me, is approximated (to an excellent accuracy) by consid-
ering the nuclei alone as the electron mass me ≈ 9.11 × 10−28 g is negligible in comparison to the
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already considering not iron atoms but pure hydrogen atoms only to simplify the
presentation. Working backwards from these numbers, we can estimate the size
of the compressed core. Using a typical radius of rn ≈ 1.25 × 10−13 cm for the
nuclei, we would expect these particles to form an object of around R ∼ (1057)

1
3 ×

1.25 × 10−13 cm ∼ 106 cm. Thus, we have ended up with a star consisting of only
neutrons, with a size of ∼10 km and a mass of ∼1 M�: a neutron star!

By considering simple order-of-magnitude estimates we have now ended up
characterizing the dimensions of a typical neutron star. A canonical neutron star
is often taken to have R = 10 km and M = 1.4 M�, so let us also adopt these
numbers for the following considerations. Such dimensions give us an impressive
mean density of ρ ∼ 7 × 1014 g cm−3. In comparison, for a typical nucleon (such
as a neutron or a proton) we had mp ≈ mn ≈ 1.67 × 10−24 g and rn ≈ 1.25 ×
10−13 cm, yielding us a nuclear density of ρn ≈ 2 × 1014 g cm−3. Not surprisingly,
the densities are of similar magnitude. However, when comparing these numbers
to our everyday matter, the difference is huge, almost 14 orders of magnitude; a
cubic centimeter of water weighs 1 g, whereas the same volume of neutron star
matter would weigh 100 000 000 000 000 g or 100 million metric tons.

Matter compressed to such a small volume has an extreme impact even on the
surrounding spacetime. Let us try to estimate, again, the order of magnitude of
these effects by considering the escape velocity — a velocity needed to escape
the local gravitational pull of an object. For us, on the surface of the Earth, it
turns out to be v⊕ =

√
2GM⊕/R⊕ = 1.12 × 106 cm s−1, for M⊕ = 5.97 × 1027 g

and R⊕ = 6.37 × 108 cm. Similarly, for the Sun it is v� = 6.18 × 107 cm s−1,
or 0.002× the speed of light. On the other hand, for a neutron star, we obtain
vNS = 1.93× 1010 cm s−1, which is already about half of the speed of light! Hence,
relativistic effects become crucial to take into account when considering neutron
stars, as one can not even escape from the surface of the star without velocities
close to those of the light.

Let us next think about the possible spin rates that a neutron star can have.
For our Sun, it takes about one month (or approximately 25.5 days, to be more
exact) to revolve around itself, corresponding to a spin rate of 4.5 × 10−7 Hz.
When compressed to the dimensions of a neutron star, the radius changes by a
factor of R�/RNS ≈ 6.96 × 1010 cm/106 cm ∼ 7 × 104. It is important to no-
tice that when a rotating object collapses, it preserves its angular momentum, not
the spin rate. Similar to an ice-figure skater pulling her arms inwards while spin-
ning, we observe an increase in the spin in order to preserve the angular momen-
tum. As the rotational inertia increases as a square from the distance to the axis,
our Sun, when compressed to the scale of a neutron star, would obtain a spin of
4.5 × 10−7 Hz × (7 × 104)2 ∼ 2 × 103 Hz, 2000 revolutions per second. The young
proto neutron star, however, quickly slows down after its birth, so more typically,
spins of around 100 to 1000 Hz are observed, which is still about one revolution
per 1 to 10 milliseconds.

proton mass.
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One final characteristic we can try to estimate is the magnetic field. Here we
can follow a similar chain of reasoning as with the spin and start from typical val-
ues such as those of our Sun. For the Sun, the slow rotation gives rise to a dynamo
process that produces a magnetic field of around B� ≈ 1 G.∗ When considering
magnetic field, it is the magnetic flux through the surface that conserves, hence we
expect the field to scale also as a square of the radius. Using the same compression
ratio of 7 × 104 for the radius, we then obtain BNS ≈ 1 × (7 × 104)2 G ∼ 1010 G.
Comparing this to the value of 106 G for the strongest non-destructive magnet on
Earth, we start to grasp the level of energetics that neutron stars have to offer; even
their original non-amplified magnetic field is ×10 000 stronger. In some cases,
a dynamo effect originating from the rapid rotation of the star can amplify the
magnetic field even by a factor of a million. This gives rise to neutron stars with
immense magnetic field strengths of B ∼ 1016 G.

It is fair to conclude that neutron stars are dominating the record tables of
physics in almost all of their aspects. They are superdense, superfast rotators,
sources of superstrong magnetic fields, and superrich in the range of physics in-
volved. In short: they are the superstars of physics!†

∗A typical refrigerator magnet is about 50× stronger with a magnetic field of 50 G.
†This is (humorously) called the Pines theorem as everything is super- when considering neutron

stars, as postulated by David Pines in a talk given at the conference on Neutron Stars: Theory and
Observation (The NATO Advanced Study Institute, Crete, Greece, September 3–14, 1990).
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2 Physics of neutron star interiors

In this chapter, we will review the neutron star interiors in more detail. In practice,
this means describing the behavior of the matter from densities of ∼10−3 g cm−3 to
∼1015 g cm−3, an impressive 18 orders of magnitude range starting from a hot and
rarefied electron corona to an ultra-dense neutron liquid.

The structure of the star can be roughly divided into three distinct sections: at-
mosphere, crust, and core. These sections are visualized in Fig. 2.1. Neutron star
atmosphere holds a negligible amount of matter in comparison to the whole star,
but it plays an important role in shaping the outgoing radiation. It is the radiation
from the atmosphere that we actually observe. The crust, like the name implies,
can be understood as a solidified layer surrounding the liquid core. Physics de-
scribing the crust is relatively well known and same type of matter consisting of
ions, protons, and electrons can be found inside white dwarf stars. Bulk of the
mass, on the other hand, is located in the liquid neutron core. Detailed micro-
physics of such matter is still unknown, and this is reflected in a large uncertainty
in the actual size of the star that is still poorly constrained.

We begin by giving an overview of the characteristics of each of the different
layers. By combining this information, we can then build different models for the
neutron stars and describe some more global aspects of them such as mass and ra-
dius. For this we need to solve the relativistic equations of hydrostatic equilibrium,
that are also discussed. In the end, this enables us to build a mapping between the
(un)known microphysics of the dense matter and the astrophysical observables.

2.1 Equation of state

In thermodynamics, we speak of state variables that describe a current state of the
matter under given physical conditions. These include, for example, the density ρ,
pressure P, and temperature T of the matter. Equation of state is a thermodynam-
ical equation connecting these state variables together. Often, when focusing on
neutron stars, what we mean by EoS is a function connecting the pressure and the
density of the matter only, P(ρ).

The dependency on the rest of the variables such as temperature can be of-
ten forgotten because the matter is degenerate. In contrast to the “normal” matter
where statistical moments such as temperature can be used to describe a large en-
semble of particles, the degenerate matter is dominated by quantum mechanical
effects of single particles. Because of the immense densities, a free particle in de-
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Figure 2.1: Schematic view of neutron star structure illustrating the different
internal regions, related densities, and the compositions.

generate matter is actually bounded into a finite volume. Inside this small volume,
the energy levels of the particle are restricted to take only a discrete set of val-
ues called quantum states, because of the underlying wave-nature of the quantum-
mechanical description. Hence, a notion of temperature, for example, does not
make much sense.

An overview of the EoS for the full range of densities relevant to neutron stars
is shown in Fig. 2.2. From here it is easy to see that temperature only plays a role in
the very uppermost ∼10 meters of the stars interiors. Behavior of the matter is also
quite well known all the way up to the crust-core interface, after which we start
to see larger deviations because of the different EoS models. In the laboratories
on Earth, we can probe the matter somewhere close to 1014 g cm−3, after which
the densities become too great for us to manipulate.∗ On the other hand, it is
exactly starting from this density range that the bulk of the neutron star just starts.
Another curious quirk of Nature is how all of the complicated microphysics gets
reduced to simple line segments in the logarithmic scales, also known as polytropic
pressure relations. In the following sections, we will focus on deriving these simple
relations as it helps us in understanding the underlying physics.

2.2 Atmosphere

Atmosphere of a star is the first and uppermost layer responsible for the emergent
radiation. Usually, it consists of a thin layer of plasma and ranges from a few
millimeters to a couple of centimeters in height, but in some cases if the emerging
radiation field is strong enough it can momentarily expand the atmosphere up to

∗Maximum densities reached in the Earth are usually obtained by colliding heavy nucleons
together, momentarily creating a core of even denser matter. The densest naturally occurring element
found on top of planet Earth is osmium that has an atomic density of “just” ρ ≈ 2.2 × 101 g cm−3.
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Figure 2.2: Overview of the pressure versus density relation for the full range of
densities relevant for neutron stars. Here the evolution of the pressure is shown
against the densities depicted in the bottom vertical axis. Green solid line shows
the EoS for matter at T = 106 K, whereas blue line is for T = 5× 106 K, and black
for T = 107 K. Additionally, the upper horizontal axis shows the evolution of the
radial coordinate computed for one particular EoS (SLy, see Sect. 2.4) and neu-
tron star configuration (mass of 1.4 M�). Different shaded vertical regions show
the corresponding interior structures of the star. Additionally, some interesting
densities are highlighted with dashed red lines and text labels (see Sects. 2.2−2.4).

several hundreds of meters. In most situations the plasma is in a gaseous state, but
in some more rare cases when the magnetic field is extraordinarily strong and the
temperature is low, the plasma can condense into a liquid or a solid surface. Such
condensed surfaces are, however, rare and usually the gaseous description is more
than enough to give an accurate description of the physics of the atmosphere.[62,63]

Properties of the emergent thermal radiation strongly depend on the chemical
composition of the atmosphere. In the atmospheres of normal stars, the composi-
tion is a mixture of multiple elements. The most stable chemical element on the
surface of a neutron star is iron. However, even a small accreted mass of 10−17 M�,
originating from the surrounding interstellar medium or a binary companion, is
enough to cover the whole star, and then a variety of elements are also expected in
the neutron star atmospheres. On the other hand, the enormous gravity results in
an effective separation of elements leading to a strong sedimentation of the atmo-
sphere where the lighter elements are expected to lay on top of the heavier ones, if
the accretion does not constantly replenish the surface layers.[64]
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Chapter 2: Physics of neutron star interiors

2.2.1 General relativistic effects

The effects from the gravity can be quantified by considering a so-called compact-
ness parameter

u =
RS

R
, (2.1)

where R is the radius of the neutron star and the corresponding Schwarzschild
radius is defined as

RS =
2GM

c2 ≈ 2.95
M
M�

km, (2.2)

where G is the gravitational constant, c is the speed of light, and M is the mass
of the star.[65,66] Hence, neutron star has a compactness parameter in the range
of u ≈ 1/3 to 1/2 resulting in considerable general relativistic corrections. In
comparison, the Sun has u ≈ 4.24× 10−6. The compactness is also directly related
to the gravitational redshift as

1 + z = (1 − u)−1/2, (2.3)

that describes how an energy of a photon changes when it has to climb up the
gravitational potential well that is created by the star, for example.

Gravitational acceleration under general relativistic theory is

g =
GM
R2

1
√

1 − u
= 1.38 × 1014 1

√
1 − u

(
M
M�

) (
10 km

R

)2

cm s−2. (2.4)

Hence, a surface gravitational acceleration g of ∼1014 to ∼1015 cm s−2 is expected
for neutron stars. By considering an isothermal atmosphere we can also estimate
the scale height as

Ha =
kBT
mig

≈
0.83

A

( T
106 K

) (1014 cm s−2

g

)
cm (2.5)

where kB = 1.38 × 10−16 erg K−1 is the Boltzmann constant, T is the temperature
of the atmosphere, mi = Amu, and mu ≈ 1.66 × 10−24 g is the atomic mass unit.
From here, the typical scale height values of ∼1 cm to ∼10 cm are obtained for
atmospheres of T = 106 and 107 K.[62,63] The strong gravitational field also bends
the photon trajectories.[67] Hence, in addition to the radius R of the star as measured
in the local reference frame, another apparent radius, as measured by an observer
at infinity,

R∞ =
R

√
1 − u

, (2.6)

is usually needed when describing the observable features of the atmosphere. From
here it is then clear that the atmosphere and the emerging radiation encodes infor-
mation from the physical parameters of the star. More specifically information
about the temperature, surface gravity, chemical composition, and compactness
can be obtained.

16



2.2 Atmosphere

2.2.2 Radiative transport in the atmosphere

The standard approach in describing the atmosphere structure includes solving
three main equations of radiative transfer, hydrostatic balance, and energy con-
servation. First such a low-B field model of hot neutron star atmospheres were
presented in the pioneering work by London et al.[68,69] and Lapidus et al.[70]. Let
us next walk through these equations, as they are rather simple. A more general
description for the atmosphere model computations are given in[71,72], where the
fully relativistic electron scattering is also taken into account, whereas here we
only consider the classical elastic (Thomson) scattering.

Because the thickness of the atmosphere is much smaller than the radius of the
star,∗ the atmosphere can be considered in plane-parallel approximation. Rather
high densities, on the other hand, allow to consider the plasma of the atmosphere
in local thermodynamical equilibrium.

Spectrum, beaming and polarization of emerging radiation can be determined
from radiation transfer problem in atmospheric layers. Radiation can be under-
stood as an energy flow, i.e., energy dE per area dA, time dt, frequency interval
dν, and solid angle dΩ. This is known as the specific spectral intensity which we
can mathematically formulate as

Iν =
dE

dA dt dν dΩ
. (2.7)

Radiation averaged over the solid angle, or the so-called mean specific intensity
(zeroth moment of Iν) is then

Jν =
1

4π

∫
Ω

IνdΩ =
1

4π

∫ 2π

0
dφ

∫ π

0
Iν sin θdθ =

1
2

∫ +1

−1
Iνdµ, (2.8)

where we have assumed that the radiation does not depend on the azimuthal φ angle
(as is typical for atmosphere calculations) and introduced µ ≡ cos θ as the cosine
of the zenith angle. Net rate of energy flowing across a unit area (for example a
photon detector) from all directions per time and frequency is known as physical
flux.† It is proportional to the first-order moment of Iν and is defined as

Fν = 2π
∫ +1

−1
Iνµdµ. (2.9)

Similarly, the second-order moment of Iν, or a so-called K-integral, is

Kν =
1
2

∫ +1

−1
Iνµ2dµ, (2.10)

which is related to the radiation pressure, as we later on will see.

∗Recall the scale height of 1 to 10 cm in comparison to the radius of 106 cm.
†Strictly speaking, the first-order moment of Iν is known as the Eddington flux Hν =

1
2

∫ +1

−1
Iνµdµ. Physical flux is related to it as Fν = 4πHν and sometimes one also encounters the

“astrophysical” flux defined as Fν/π.
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Chapter 2: Physics of neutron star interiors

Now we can introduce the radiative transfer equation for Iν as

µ
dIν
dτ

=
µ

κν

dIν
dy

= −
µ

ρκν

dIν
dz

= Iν − S ν (2.11)

where τ is the optical depth, y is the column density (mass per area), z is the vertical
distance from the surface, κν = αν + σν is the total radiative opacity including
contributions from the “true” opacity αν and from the scattering opacity σν. Here
the connection between different independent variables is given as

dτ = κνdy = −κνρdz, (2.12)

relating the optical depth (distance as experienced by the radiation), column den-
sity (projected number density of matter along the path of the radiation), and the
height. In addition, we need the source function

S ν = (σνJν + αBν)κ−1
ν , (2.13)

where the scattering term is proportional to the mean spectral intensity Jν and the
“true” absorption term to the thermal Planck function

Bν(T ) =
2hν3

c2

1
exp [hν/(kBT )] − 1

, (2.14)

where h = 6.63 × 10−27 erg s is the Planck constant. As a boundary condition for
this equation, we can use Iν = 0 for µ < 0 at y = 0 (i.e., the surface). The atmo-
spheres are also usually considered to be in radiative and hydrostatic equilibrium,
i.e., (quasi-)stationary. The first requirement assumes that energy is transported
by radiation only, i.e., we neglect, for example, conduction and convection. The
energy balance in the atmosphere can then be expressed via the radiation flux F
only as ∫ ∞

0
dν

∫ 2π

0
dφ

∫ +1

−1
Iνµdµ = F = σSBT 4

eff , (2.15)

where σSB = 5.67× 10−5 erg cm−2 s−1 K−4 is the Stefan-Boltzmann constant, and
Teff is the effective temperature. The second requirement of hydrostatic equilib-
rium, demands that

dPg

dy
= g − grad, (2.16)

where, in addition to the gravitational acceleration g we need the opposing ra-
diative acceleration grad. Finally, we need to supplement these equations with an
equation connecting the gas pressure Pg and density. For the rarefied atmosphere,
the ideal gas law is an excellent approximation

Pg = nkBT, (2.17)

where n is the number density of particles.
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2.2 Atmosphere

2.2.3 Eddington limit

Usually the atmospheres we calculate are dynamically stable and in hydrostatic
balance because large gravity implies grad � g. Sometimes, however, the radiation
flux might increase to such a strength that it is able to compete against even the
enormous gravity of a neutron star. An important limit can then be defined for
grad = g, known as the Eddington limit after a renowned astrophysicist Sir Arthur
Eddington. Let us now for completeness derive this limit.[73,74]

We can start by formulating an expression for the radiation pressure. This can
be easily done when we realize that pressure is just flow of momentum through a
surface per unit time and photons carry a momentum of E/c = hν/c, i.e., projection
of the radiation flux into the surface that is considered. In terms of Iν this is then

Prad,ν =
1
c

∫ 2π

0
dφ

∫ +1

−1
Iνµ2dµ =

4π
c

Kν, (2.18)

relating the pressure and the second-order moment Kν together. Radiative acceler-
ation is then

grad =
dPrad

dy
=

d
dy

∫ ∞

0
Prad,ν dν =

4π
c

d
dy

∫ ∞

0
Kνdν. (2.19)

Let us refine this expression by inserting the definition of Kν and applying the
radiative transfer equation (2.11) in the subsequent equation to obtain

grad =
4π
c

d
dy

∫ ∞

0
dν

1
2

∫ +1

−1
Iν µ2dµ

=
2π
c

∫ ∞

0
dν

∫ +1

−1
µ dµ

{
µ

d
dy

Iν

}
=

2π
c

∫ ∞

0
dν

∫ +1

−1
µ dµ {κνIν − κνS ν} .

(2.20)

We can then simplify equation (2.20) further by assuming isotropic source func-
tion S ν(µ) = S ν and opacity κν(µ) = κν to get

grad =
2π
c

∫ ∞

0
dν

∫ +1

−1
µ dµ κνIν −

2π
c

∫ ∞

0
dν

∫ +1

−1
µ dµ κνS ν

=
2π
c

∫ ∞

0
dν κν

∫ +1

−1
Iνµdµ + 0

=
1
c

∫ ∞

0
κνFνdν

=
1
c
κFF,

(2.21)

where F =
∫ ∞

0 Fνdν is the bolometric flux, and

κF =
1
F

∫ ∞

0
κνFνdν, (2.22)
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Chapter 2: Physics of neutron star interiors

is the flux mean opacity.[75,76] From Eq. (2.21) we then see that the radiation accel-
eration is directly related to the flux of the radiation. Not every photon, however,
interacts and collides with the matter, and hence the opacity correction κF is also
needed. Setting (2.21) equal to g we can solve for the Eddington flux as

FEdd =
gc
κF

=
GMc
R2κF

1
√

1 − u
. (2.23)

Usually in many astrophysical scenarios the opacity is dominated by the electron
scattering opacity with a characteristic (Thomson) cross-section for the interaction
σT = 6.65×10−25 cm−2. Mass for a hydrogen plasma, on the other hand, is mainly
set by the protons, hence, opacity per unit mass is then

κF ≈
σT

mp
≈ 0.4 cm2 g−1. (2.24)

Finally, by calculating the total radiation flux through the stellar surface, we can
define a quantity called luminosity as

L = 4πR2F(R), (2.25)

where F(R) is the outcoming radiation flux at the surface. Using the aforemen-
tioned equation, we can then define the Eddington luminosity for a star as

LEdd =
4πGMcmp

σT
≈ 1.3 × 1038

(
M
M�

)
erg s−1. (2.26)

For neutron stars with surface temperature of T ∼ 107 K this limit can be reached,
after which the atmosphere can momentarily expand to counter the excess force as
exerted by the radiation.

2.3 Crust

Below the gaseous atmosphere, a solidified layer of matter exists, called crust.[77–79]

Between the atmosphere and crust, a liquid ocean of ions also exists, but the inter-
face is not very strict and the matter is smoothly evolving from one state to another.
The solidified crust is also typically divided into an outer and inner layer, but the
interface is again ambiguous. The pressure here is dominated by the degenerate
electrons. In the beginning, the electrons can be taken to be non-relativistic but at
about ρ∼106 g cm−3 they turn ultra-relativistic because of the increasing density.

By definition, the outer crust is a layer in the neutron star interior where the
plasma consists of electrons and nuclei, whereas the inner crust is characterized
by an additional appearance of neutrons that start to drip out from the extremely
neutron-rich nuclei. The density this occurs is called the neutron drip density and
is around ρND ∼ 4 × 1011 g cm−3. The outer crust, when defined to begin from
the atmosphere at ρ ∼ 103 g cm−3 and continue to about ρND is only about some
hundred meters thick. The characteristics of the matter are strongly dependent on
the Coulomb interactions of charged particles that form a solid Coulomb crystal.
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2.3 Crust

The inner crust is taken to continue all the way down to the crust-core interface,
where the matter turns liquid again. This layer is about one kilometer thick. Here,
at the bottom of the crust, the density is already close to the nuclear density of
ρn = 2.8 × 1014 g cm−3 but the exact location of the transition depends on the
detailed microphysics of the core. The fraction of free neutrons grows with the
increasing density. Because the normal nuclei here are immersed into free neutron
gas, the nuclear interactions play a crucial role in defining the matter. Finally, the
nuclei disappear totally when we enter the core. Before that, however, the nuclei
form complicated structures that evolve together with the density. This region is
also known as the nuclear pasta phase, as the different structures are named after
the pasta types that they resemble.[80]

2.3.1 Fermi gases

The matter in the crust is degenerate.[81] Let us discuss the physics behind degen-
erate matter and the related important concept of Fermi energy now. Elementary
6-dimensional phase space cell of any particle is bounded by the Heisenberg un-
certainty principle as

∆x∆y∆z∆px∆py∆pz = h3, (2.27)

where ∆x∆y∆z is the volume in ordinary space, ∆px∆py∆pz the volume in the
momentum space, and h is the previously defined Planck constant. In general the
number density is given as

nav =
g

exp[(E − µ)/kBT ] ± 1
, (2.28)

where + is used for fermions (such as electrons and protons), and − for bosons
(such as photons). Additionally, the g is the number of different quantum states a
particle may have inside the cell, E is the total particle energy, and µ is the chemical
potential that describes the free energy content of the system per particle. Number
of particles per unit volume with momentum between p and p + dp is

n(p)dp = nav
4πp2

h3 dp, (2.29)

i.e., particles inside a spherical shell with a surface 4πp2 and thickness dp. Number
density of particles with all momenta is then

n =

∫ ∞

0
n(p)dp. (2.30)

The energy in equation (2.28) is the total energy E ≡ Etot = E0 + Ek, composed
of the rest-mass energy E0 = mc2 and kinetic energy Ek. In special relativity, there
exists a relation for the total energy as E2

tot = (mc2)2 + (pc)2, so

E = mc2
[
1 +

( p
mc

)2
]1/2

, (2.31)
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Chapter 2: Physics of neutron star interiors

and the kinetic energy is then simply

Ek = mc2

(1 +

( p
mc

)2
)1/2

− 1

 . (2.32)

Simple asymptotic limits can be obtained for the kinetic energy as

Ek ≈


p2

2m
if p � mc (non-relativistic)

pc if p � mc (ultra-relativistic).
(2.33)

Let us now focus on fermions only and select the +-sign (Fermi-Dirac distribu-
tion) in Eq. (2.28). Fermions are characterized as spin- 1

2 particles. In accordance
with the quantum mechanics, there is room for only one fermion inside an ele-
mentary cell (2.27). The degeneracy parameter g is then equal to 2 because we can
have particles of spin − 1

2 and + 1
2 in the same “physical location” (∆x∆y∆z), as they

still have different “momentum locations” (∆px∆py∆pz) in phase space because of
the non-equal spins.

The chemical potential µ in Eq. (2.28) can be expressed as

µ = εF + (E − Ek), (2.34)

where εF is a reference energy level known as the Fermi energy. This reflects how
the chemical potential is equal to the amount of energy that can be liberated from
the system. This is also known as chemical energy. Hence, the number density of
fermions in general is

nf =
8π
h3

∫ ∞

0

p2dp

exp( Ek−εF
kBT ) + 1

. (2.35)

If the Fermi energy εF � kBT , the distribution will be Maxwellian even for small
kinetic energies. On the other hand, if εF � kBT we can divide the integrand of
Eq. (2.35) into two distinct regions of

p2

exp( Ek−εF
kBT ) + 1

≈

 p2 if Ek � εF

0 if Ek � εF,
(2.36)

with a sharp transition in between at Ek ≈ εF. This allows us to define a charac-
teristic momentum related to the transition energy εF, called Fermi momentum pF,
so that

nf ≈
8π
h3

∫ pF

0
p2dp =

8π
3

( pF

h

)3
. (2.37)

Physically this can be interpreted such that when the temperature decreases, the
fermions start to occupy all the quantum states starting from the one with the lowest
energy all the way up to the Fermi energy. Because of the Pauli exclusion principle,
no more than one fermion can exist in the same quantum state so the levels are
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2.3 Crust

filled in order, and all the higher states will remain empty. Hence, the highest
momenta possible in the fully degenerate matter is the Fermi momentum given as

pF =

(
3nf

8π

)1/3

h. (2.38)

It is, of course, also related to the Fermi energy simply as

εF =
1
2

p2
F

m
, (2.39)

that we previously defined merely as a reference energy level. However, from this,
the physical interpretation should also become clear as Fermi energy corresponds
to the energy of the highest quantum state occupied in the system when tempera-
ture reaches zero.

2.3.2 Why neutrons then?

Let us first consider an ideal gas of degenerate electron-proton-neutron plasma to
understand the basic composition of the crust.[82] In a degenerate plasma all the
quantum states are filled up all the way to the Fermi energy, as we just learned.
The normal beta-decay mode for the neutrons, on the other hand, is

n→ p + e− + ν̄e, (2.40)

that describes the possible path of how a neutron n will decay into a proton p,
electron e−, and electron antineutrino ν̄e. It is because of this decay, that we do
not expect to see any free neutrons flying around. Such a natural decay, however,
might be blocked because there is no room for an emission of an extra electron e−

or a proton p.
Let us then only focus on the decay of the most energetic neutrons with an

energy equal to the Fermi energy εF(n), where the related particle species is now
defined inside the parentheses for clarity. Co-existence of neutrons, protons, and
electrons is guaranteed (at zero temperature) if

εF(n) = εF(p) + εF(e−). (2.41)

Massive neutrons and protons are to a good approximation non-relativistic up to
densities of 1014 g cm−3, and hence energy is simply a sum of their rest mass en-
ergy and kinetic energy

εF(n) ≈ mnc2 +
pF(n)2

2mn
, (2.42)

and

εF(p) ≈ mpc2 +
pF(p)2

2mp
. (2.43)

Electrons, on the other hand, are already ultra-relativistic, and so

εF(e−) ≈ pF(e−)c. (2.44)
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Chapter 2: Physics of neutron star interiors

Also note that np = ne, as the star is electrically neutral.
From this we can solve nn/np ∼ 5, 100, and 1000 for ρ ∼ 108, 109, and

1010 g cm−3, respectively, by taking into account the rest mass difference mn −

mp ≈ 1.3 MeV c2. Thus, we conclude that the matter inside is expected to be
neutron rich, even though normally the neutrons would β-decay back to protons
and electrons. Not only is the degeneracy then responsible for the pressure but it
is also the source of the neutron enrichment.

2.3.3 Degenerate electron gas

Let us next consider the equation of state for the crust. As we have seen, the pres-
sure in the crust originates from the degenerate electron gas. The physics behind
this are quite simple, and we repeat the calculations here to introduce the reader
to the topic. The result also bears some historical value as these are the equa-
tions that were first introduced by Dirac[7], Fowler[8], Frenkel[13], Anderson[10],
Stoner[9], and Chandrasekhar[11].[77,81,83–89]

The behavior of the matter in the crust is dominated mainly by the electrons.
For this reason, it can be characterized by the electron number density ne and
temperature Te, hereafter just T in this section. Instead of ne, let us use the electron
Fermi momentum pF (2.38) as a measure of the number density. It is convenient
to describe it in the units of electron rest mass, as

xr ≡
pF

mec
, (2.45)

also known as the relativity parameter.[85] We will also need the more generic
special relativistic form of the Fermi energy

εF = c
√

(mec)2 + p2
F, (2.46)

that for a strongly degenerate gas, has the meaning of the chemical potential µ.
Finally, the electron Fermi temperature is

TF =
mec2

kB


√

1 +

(
pF

mec

)2

− 1

 = Tr(γr − 1), (2.47)

where a typical temperature is

Tr =
mec2

kB
∼ 6 × 109 K, (2.48)

and a relativistic scaling factor is defined as

γr ≡

√
1 + x2

r . (2.49)

Then, the temperature can also be expressed in units of Tr as

tr ≡
T
Tr
. (2.50)

Using these definitions, it is easy to characterize how relativistic the electron gas
is. We can divide it into three regions of
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2.3 Crust

• non-relativistic, for which tr � 1 and/or xr � 1,

• mildly-relativistic, tr ∼ 1 and/or xr ∼ 1,

• ultra-relativistic, tr � 1 and/or xr � 1.

Similarly, we can scale the temperature with the Fermi temperature to get a
so-called degeneracy parameter

ΘF ≡
T
TF
. (2.51)

It can be then used to characterize the degeneracy of the plasma to regions of

• non-degenerate, for which ΘF � 1,

• mildly degenerate, ΘF ∼ 1,

• and strongly degenerate, ΘF � 1.

Moving on from an ideal gaseous plasma in the atmosphere, we can start by
introducing corrections produced by the closely packed charged particles. In prac-
tice, we use the so-called ion-sphere model to describe our Coulomb liquid of ions.
We now assume that our ions are emerged into a sea of rigid electron background
that takes care of the charge neutrality. In order to couple the number density of
electrons and the mass of the plasma, let us first define the mean charge per mass
ratio of the plasma as

µZ,A =
〈Z〉
〈A〉

, (2.52)

where 〈Z〉 is the mean charge number of the atomic nuclei (for a one-component
plasma it is simply Z), and 〈A〉 is the average number of nucleons bound by one
nucleus. For most plasmas, µZ,A ≈

1
2 .

Let us now begin by defining a so-called electron sphere radius as

re =

(
4πne

3

)−1/3

. (2.53)

We can also parameterize the strength between Coulomb (charge) interactions by
considering a ratio of potential energy to the kinetic energy with

Γe =
e2

rekBT
≈ 22.75

(
106 K

T

) (
ρ

106 g cm−3

)1/3

µ1/3
Z,A, (2.54)

where e = 4.80 × 10−10 esu is the electron charge. Similarly, for ion with a charge
number of Zi, we can define the ion-sphere radius

ri = reZ1/3
i , (2.55)
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that encapsulates enough volume to be charge neutral, when considering the static
electron-induced background from ne. Ion Coulomb coupling factor is similarly

Γi = ΓeZ5/3
i =

(Zie)2

rikBT
. (2.56)

At high temperatures, the electrons form a classical Boltzmann gas. When
the temperature is decreased, the plasma will then become a strongly coupled
Coulomb liquid corresponding to the neutron star ocean. If the temperature is
decreased further, the plasma will transform into a Coulomb crystal. The gaseous
regime can be constrained to be at Γi � 1, or T � TB, where the TB is given as

TB =
Z2e2

aikB
≈ 2.28 × 107

(
ρ

106 g cm−3

)1/3

µ1/3
Z,A K. (2.57)

The pressure for such a system can be obtained via the standard thermodynam-
ical relation

P =

(
∂F
∂V

)
T
, (2.58)

where F is the Helmholtz free energy and V is the volume of the system.[81] It
is useful to divide the free energy into an ideal part Fid corresponding to non-
interacting particles, and to the excess part Fex, leading to

F(V,T ) = Fid + Fex. (2.59)

Similarly, we could decompose the ideal effects from ions to F(i)
id and from elec-

trons to F(e)
id , yielding

F(V,T ) = F(i)
id + F(e)

id + Fex. (2.60)

Most important non-ideal deviation for the plasma is from the Coulomb interaction
between ions and electrons, and between electrons in the rigid background Fex ≈

Fii. This free energy decomposition then induces similar division for the pressure

P ≈ P(i)
id + P(e)

id + Pii. (2.61)

The main contributor for the pressure is the electron degeneracy pressure, P(e)
id .

Other terms, given as |Ppart|/P
(e)
id , result in leading order terms of[89]

P(i)
id

P(e)
id

≈
Θ

(i)
r

Z
(2.62)

Pii

P(e)
id

≈ αf
γr

xr
, (2.63)

where Θ
(i)
r is the temperature in units of nucleon Fermi temperature (see Eq. 2.51),

αf = e2/~c ≈ 1/137 is the fine-structure constant, and ~ = h/2π. From here it is
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2.3 Crust

easy to see that only the Coulomb interaction term Pii, should give a measurable
correction to the pressure at low temperatures because for the conditions inside
neutron stars Θ

(i)
r is very small. This suggests that for the pressure P we can use

the approximation
P ≈ P(e)

id + Pii. (2.64)

In the weak-coupling limit (Γi � 1) the Debye-Hückel result for the excess
free energy is a sufficiently good approximation, expressed as[81,90–92]∗

Fex

V
=

1
√

3
nikTΓ

3/2
i , (2.65)

where ni is the ion number density. Hence, the pressure correction due to the
Coulomb interactions can be simply presented as

Pii ≈ −0.3ni
Z2e2

ri
(2.66)

by using Eq. (2.58). Note also that Γi = Γi(V) when taking the derivative in
respect to the volume when deriving the expression for the pressure.

Let us, as a final task, look into the main degenerate electron pressure term
P(e)

id . Pressure is defined as a flux of momentum through a surface, hence for one
particular wall it is

P =

∫ ∞

0
〈vx px〉n(p)dp, (2.67)

where the number density n(p) is desribed by the Fermi-Dirac distribution, given
by Eq. (2.28). Velocity can be obtained from the standard expression

v =
dE
dp

=
p

me

1 +

(
p

mec

)2−1/2

, (2.68)

using the energy defined by Eq. (2.31). Here we have already inserted the electron
mass m = me = 9.11× 10−28 g into the equations. Hence, in the three-dimensional
description the pressure is given as one-third of what we would get when inserting
Eqs. (2.28), (2.29), and (2.68) into (2.67):

P =
1
3

∫ ∞

0
v(p) p n(p) dp =

8π
3meh3

∫ ∞

0

p[
1 +

(
p

mec

)2
]1/2 p

p2

exp[(E − µ)/kBT ] + 1
dp.

(2.69)
Free energy of the system is then equal to what is left from the chemical potential
after subtracting the electron rest-mass energy and the pressure contribution,

F = (µ − mec2)ne −
8π

3meh3

∫ ∞

0

p4dp[
1 +

(
p

mec

)2
]1/2

1
exp[(E − µ)/kBT ] + 1

. (2.70)

∗Debye-Hückel approximation relays on the assumption that the charge density surrounding an
ion is described by electrostatics (Poisson’s equation) and the distribution of the charge around the
ion itself by thermal motions of electrons (Boltzmann’s equation).
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Sommerfield expanding the free energy expression in powers of temperature, i.e.,
tr, we finally obtain[89]

F
V

=
mec2

λ̄3
C

1
8π2

(
xr(1 + 2x2

r )γr − ln(xr + γr) −
4π2

3
t2
r xrγr

)
+ O(t4

r ) (2.71)

from which it is easy to obtain an expression for the degenerate electron pressure
by applying Eq. (2.58),

P(e)
id ≈

Pr

8π2

[
xr

(
2
3

x2
r − 1

)
γr + ln(xr + γr) +

4π2

9
t2
r xr(γr + γ−1

r )
]
, (2.72)

where again a typical pressure is given as

Pr =
mec2

λ̄3
C

≈ 1.4 × 1025 dyn cm−2, (2.73)

and λ̄C = ~/mec = 3.86 × 10−11 cm is the reduced electron Compton wave-
length.∗ Omitting the (small) temperature related term (∝ t2

r ) leads to the well-
known Chandrasekhar equation of state for a perfect, completely degenerate elec-
tron gas.[9,83,93]

In the non-relativistic and ultra-relativistic regimes, we can apply the asymp-
totic limits of Eq. (2.33). Then, the pressure (2.72) takes a simple polytropic form

P(e)
id ≈

Pr

9π2γAD
x3γAD

r , (2.74)

where the polytropic index is given as γAD = 5
3 or γAD = 4

3 , for the non-relativistic
(xr � 1) or the ultra-relativistic (xr � 1) electrons, respectively. Recall also
that xr ∝ n1/3

e ∝ ρ1/3. The transition occures at xr ≈ 1, corresponding to about
ρ ∼ 106 g cm−3.

Finally, as suggested by our analysis given in Eq.(2.62), the ideal degenerate
electron gas pressure accompanied with the ion Coulomb correction will give us a
rather good approximation for the equation of state as

P(xr) ≈ P(e)
id + Pii =

Pr

8π2

(
xr(

2
3

x2
r − 1)γr + ln(xr + γr)

)
− 0.3ni

Z2e2

ri
, (2.75)

remaining valid in a large density range of 104 < ρ < 1010 g cm−3. Below ρ <

104 g cm−3 the plasma is gaseous and the ideal gas law description (2.17) is better
suited in modeling the equation of state. Beyond ρ > 1010 g cm−3 the densities
become so high that nuclear degeneracy pressure and more importantly, the mutual
nuclear interactions start to play an important role.

∗Normal Compton wavelength is simply λe = 2π ×λ̄C = h/mec = 2.43 × 10−10 cm.
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2.4 Core

2.4 Core

After the relatively well-known crust, a physical no-man’s land begins when we
enter the core. At about half of the nuclear density, ρn ≈ 2.8 × 1014 g cm−3,
the nuclei become so neutron-rich that more neutrons will leak out then what is
left bounded. Hence, normal atoms can no longer exists, and the matter becomes
a uniform plasma of neutrons, protons, and electrons. In the end, we will have
a liquid sea of free neutrons with a several per cent admixture of protons and
electrons. The neutrons and protons, interacting via the nuclear forces, constitute
a strongly interacting Fermi liquid, whereas electrons form an almost ideal Fermi
gas. Instead of purely degenerate non-interacting matter, like the electrons in the
crust, the nucleons become close enough to interact with each other. When in
close contact, the repulsive short-range neutron-neutron interaction introduces a
considerable stiffening to the equation of state. Hence, a many-body theory is
needed in order to describe the matter in the core. If we take the effective range
of strong nuclear forces to be of around rsn ∼ 10−13 cm, we can easily estimate
the order-of-magnitude of the density when they become important by equating
the mean distance between nucleons to rsn. In this case we obtain ρsn ∼ mn/V =

3 × 1.66 × 10−24 g/4πr3
sn ∼ 4 × 1014 g cm−3, a density range surprisingly close to

more sophisticated calculations giving ρ ∼ (1.5 − 2) × 1014 g cm−3.[94]

A density range between 0.5 ρn < ρ < 2 ρn (i.e., (1.4− 5.6)× 1014 g cm−3) cor-
responds to the outer core. For neutron stars it is already several kilometers thick
and constitutes a substantial part of the total mass of the star. The matter con-
sists of so-called npeµ composition, referring to neutrons n, protons p, electrons
e, and in some models to muons µ. The basic physics of this matter is determined
by charge neutrality, β-equilibrium, and many-body nuclear interactions. Beyond
ρ > 2 ρn ≈ 5.6×1014 g cm−3, we have the inner core. Its composition is even more
unknown and the results here become heavily model-dependent. This is mainly
because, in addition to the many-body forces, the exact particle composition is
unclear. In addition to the npeµ matter, we might have hyperonization (Σ−, Λ, or
more generally sometimes labeled as H), pion condensation (π), kaon condensa-
tion (K), or even a phase-transition to a (pure or partial) quark matter (q). Inner
core of a neutron star can be many kilometers thick, and the central densities of
the most massive stars can go up to ρ ≈ (10− 15)× ρn ≈ (2.8− 4.2)× 1015 g cm−3.

2.4.1 Polytropes

Instead of trying to obtain a very uncertain nuclear physics description of the equa-
tion of state, let us follow an alternative route. As the strongly degenerate equation
of state relevant for neutron stars is mainly just the relation between the pressure
and the density, we can try and phenomenologically parameterize this relation in
contrast to describing the accurate but complicated microphysics. One such a pa-
rameterization is a polytropic presentation of the P(ρ) function defined as

P(ρ) = Kργ, (2.76)
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Chapter 2: Physics of neutron star interiors

where γ is a polytropic index and is a measure of the stiffness of the matter, and K
is just a normalization factor. Instead of settling for only one polytrope (actually
called a monotrope then), we can link them together to form a piecewise polytropic
description of the equation of state. Such a phenomenological description was
pioneer by Read et al.[95] In practice, we can then generalize Eq. (2.76) such that

P(ρ) = Ki ρ
γi , for ρi−1 ≤ ρ ≤ ρi, (2.77)

for transition densities ρ0 < ρ1 < ρ2 < . . . < ρi−1 < ρi < ρi+1, and so on.
Note that ρ here is the rest-mass density. The energy density ε can be obtained

from the first law of thermodynamics as

d
ε

ρc2 = −Pd
1
ρc2 , (2.78)

that has an immediate integral of

ε

ρ
= (1 + a)c2 +

K
γ − 1

ργ−1, (2.79)

where a is a continuity constant. Now

lim
ρ→0

ε

ρc2 = 1, (2.80)

implying a = 0 for small densities. For the piecewise description we then have
(for γi , 1)

ε(ρ) = (1 + ai)ρc2 +
Ki

γi − 1
ργi , (2.81)

where
ai =

ε(ρi−1)
ρi−1c2 − 1 −

1
c2

Ki

γi − 1
ρ
γi−1
i−1 , (2.82)

defines the energy density to be a continuous function.

2.4.2 Library for the equation of state of the core

As noticed by Read et al.[95], in most cases, just three piecewise polytropes are
enough to give a faithful description of the accurately calculated equations of
states, up to a rms error of about 2% in pressure. Here we consider few (rela-
tively) modern descriptions for the dense matter equation of state and parameterize
them with polytropes. We follow the naming convention presented in the previous
section and divide the compositions into

• normal nuclear matter (npeµ),

• normal nuclear matter mixed with hyperons (npeµ + H),

• normal nuclear matter together with more exotic particles like pion and kaon
condensates (npeµ + π + K), and
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2.5 Tolman-Volkoff-Oppenheimer equations

• matter consisting of (or normal matter mixed with) quarks (q or npeµ + q).

The different equations of states we describe here are commonly used in the
literature[96–98] and are fitted with polytropes by Read et al.[95] Additionally, we re-
quire that the maximum mass of the equation of state fulfills the 2 M� mass limit as
set by astrophysical measurements of binary pulsars.[99–101] For npeµ composition
we include models computed with

• potential method using SLy effective nuclear interaction that is of Skyrme-
type,[102]

• four variational method EoSs, APR3/4[103] and WFF1/2,[104]

• two relativistic Brueckner-Hartree-Fock calculations, ENG[105] and MPA1,[106]

and

• two relativistic mean-field theory models, MS1 and MS1b (same as MS1 but
with lower symmetry energy).[107]

For hyperon models (npeµ + H) we include

• one variant of relativistic mean-field theory model, H4.[98]

Here the introduction of hyperons into the matter considerably softens the equa-
tion of state and the stars constructed with these models do not end up reaching
the 2 M� limit. Similarly, models where mesons, like pion and kaon condensates
(npeµ + π and/or npeµ + K) are taken into account, end up not being stiff enough.
Finally, for the hybrid nuclear matter and quark matter compositions (npeµ + q)
we include

• mixed APR nuclear matter and color-flavor-locked quark matter EoS ALF2.[108]

Again, for pure quark matter composition, the equation of state ends up being too
soft. Even in the case of the ALF2, the transition density from the nuclear matter
to quark matter is defined at a relatively late phase corresponding to ρ = 3 ρn.

These 11 equations of states end up giving quite a good overview of different
models present in the literature. We, however, stress that by no means is it a com-
plete list. The corresponding P(ρ) evolution of these models is shown in Fig. 2.3.
Unlike the previously well-defined crust, here the theoretical uncertainties become
obvious as there is quite a large scatter in between different models.

2.5 Tolman-Volkoff-Oppenheimer equations

Let us, as a final task, try and construct an actual model of a star from the equation
of state. For this, we require the star to be in hydrostatic equilibrium so that the
pressure gradient of the matter opposes the gravity. In classical Newtonian form
this can be expressed simply as

dP
dr

= −
Gmρ

r2 , (2.83)
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Figure 2.3: Equation of states for the core. Top: Pressure versus density relation,
P(ρ). Bottom: Corresponding adiabatic or the polytropic index evolution versus
the density, γ(ρ). Plain nuclear matter models are colored in black, hyperonic
(npeµ + H) with green, and quark (q) matter in red. Additionally, the exact SLy
model (shown exceptionally in dark orange) is shown with dashed lines. Grey re-
gion highlights the crust densities and the red dotted vertical line shows the nuclear
density of ρn = 2.8 × 1014 g cm−3.

where r is the radial coordinate. In addition, we will need a connection for the
mass m and radius r, that in spherical symmetry is given as

dm
dr

= 4πr2ρ. (2.84)
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Taking into account the general relativistic corrections we get

dP
dr

= −
GMρ

r2 ×
(1 + P/ρc2)(1 + 4πr3P/mc2)

1 − 2Gm/rc2 . (2.85)

This is the relativistic hydrostatic equilibrium equation as first derived by Tol-
man[15], Oppenheimer and Volkoff[16]. Difference in respect to the classical for-
mulation originates from the source of gravity: in the Newtonian case it is the mass
m, whereas in the general relativity it is the energy momentum tensor that depend
both on the energy density and the pressure. As a result, both, energy and pressure,
give rise to a gravitational field.

This has an important consequence for the stability of compact stars: Succes-
sive increase in the pressure to counter the gravity is ultimately self-defeating. We
can get an idea of this, by using an unphysical but analytically easier special case
of constant density, i.e. incompressible equation of state, as our model. By solving
Eq. (2.83) for constant density ρ(r) = ρ0, we obtain

P(r) = G
2π
3
ρ2

0(R2 − r2) (2.86)

whereas the general relativistic form described by Eq. (2.85) gives, after some
tedious algebra,

P(r) = ρ0c2

√
1 − u

(
r
R

)2
−
√

1 − u

3
√

1 − u −
√

1 − u
(

r
R

)2
, (2.87)

where again the compactness parameter u = 2GM/Rc2 is used. Unlike the classical
counter-part, the general relativistic central pressure P(0) is undefined for u ≥
umax = 8

9 , which corresponds to

Mmax =
4
9

Rc2/G ≈ 3.01
( R
10 km

)
M�. (2.88)

Even though the assumption of constant density is unphysical, the solution shows
that the relativistic equations of hydrostatic balance have a maximum mass after
which the star becomes unstable. This is an important feature of the equations
as it can be used, for example, to rule out certain equations of states, given that
we have measured some (large) neutron star mass to exist in Nature. It was also
the source of confusion in the 1930s because the degenerate neutron gas equation
of state gives Mmax ≈ 0.7 M�, while the Chandrasekhar limit, i.e., the maximum
mass for white dwarfs with degenerate electrons, give MCh ≈ 1.44 M�. From these
arguments, it would seem that neutron stars can not exist because the maximum
mass is less than that of the white dwarfs. Now we, of course, already know that
it is the nuclear many-body interactions that have a huge impact on the equations
of states and subsequently alter the maximum mass to be of around Mmax ≈ (1.5−
3) M�. Similarly, the measurements of M ≈ 2.0 M� neutron stars, that we already
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Figure 2.4: Overview of the neutron star structure for the SLy equation of state
and core density of Pc = 8.9 × 1014 g cm−3, corresponding to M = 1.4 M�. Right
side of the figure shows a schematic presentation of the star’s interiors against the
radial coordinate, whereas the left side shows the pressure (blue; bottom axis) and
cumulative mass (red; top axis) evolution from the core to the surface.

used to rule out some equations of states in the previous section, put stringent
constraints on the possible behavior of the matter.

Instead of looking at the different quantities, such as the pressure, as a function
of the density, let us now finally solve the structure of the star given the derived
equations of states. The results are obtained by numerically solving the Tolman-
Oppenheimer-Volkoff equations using the previously presented crust model and
the different equations of states for the core.∗ In Fig. 2.4 the dependency of the
pressure and cumulative mass of the star against the radial coordinate (as measured
starting from the core) is visualized for the SLy equation of state for a central
density of Pc = 8.9 × 1014 g cm−3, corresponding to M = 1.4 M�. This visualizes
the real dimensions of the neutron stars internal structure: Inner core spans about
6 km in radius from the center while the outer core extends from 6 to 11 km. The
full crust is only about ∼1 km thick, and the atmosphere is too thin to be even
visible. The core also contains more than 99% of the total mass of the star.

Instead of fixed central pressure, we can let it span a large range, starting from
some small value and ending to the pressure corresponding to the maximum mass,
to obtain mass−radius, or more succinctly, M−R curves for the equations of states.
These are visualized in Fig. 2.5 along with the pressure−density relations that yield
them. From here it is obvious how the large uncertainty in the nuclear physics of
the core then translates into a large possible allowed radius range, from about 10 to

∗TOV-solver that is used is available from https://github.com/natj/tov.

34

https://github.com/natj/tov


2.5 Tolman-Volkoff-Oppenheimer equations

1014 1015 1016

Density ρ (g cm−3)

1032

1033

1034

1035

1036

1037

1038

1039

P
re

ss
u

re
 P

 (
d

yn
e
 c

m
−

2
)

Inner
crust Core

ρ
n

9 10 11 12 13 14 15 16

Radius R (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
a
ss

 M
 (

M
¯
)

ENG

M
S1

W
F

F
1

MPA1

W
F

F
2

MS1b

SLy

H
4

A
P

R
4

APR3

AL
F2

Figure 2.5: Equation of states and the resulting neutron star mass-radius curves
for the different core models. Top: Pressure versus density relation, P(ρ). Bottom:
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15 km. It also opens up a pathway of probing the nuclear physics with astrophysics
because mass and radius measurements of real neutron stars can set constraints on
the equation of state.
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3 Astrophysics around neutron stars

Let us next discuss the violent environments of neutron stars and the related as-
trophysics therein. These surroundings also play an important role when we try to
decipher different kinds of observations of neutron stars. In the heart of this whole
problem is an astrophysical process called accretion. This is a process where mat-
ter is transferred from a one star to another because of the gravitational forces.
Most importantly, the infalling material has to somehow lose its angular momen-
tum before it is able to travel all the way to the neutron star surface. Nature’s
platform for this is called an accretion disk. Sometimes the disk also continues all
the way to the surface of the neutron star. Instead of smoothly joining the star, this
process is often violent and leads to another source of radiation as this so-called
boundary layer heats up when the rapidly rotating inner disk tries to slow down to
velocities similar to that of the more gently rotating star.

We begin by discussing the basics of the accretion process and present some
order-of-magnitude estimates relevant for the accretion disks and boundary layers.
Most importantly, we try to characterize the strength of the radiation originating
from them.

3.1 Accretion

Accretion is an astrophysical process that has its roots in the gravity. It can be a
source of an enormous amount of energy if the central object is compact, because
the depth of a gravitational well is directly proportional to the compactness of the
central source. Hence, it is an important, and often dominating, process for neutron
stars.[74]

Gravitational potential energy release for a mass m that is accreted onto a com-
pact object of a radius R and a mass M is

∆Eacc = m
GM

R
∼ 1020

(
m
g

) (
10 km

R

) (
M
M�

)
erg, (3.1)

where in the latter expression typical dimensions of neutron star are used.
This energy, 1020 erg per each gram that is accreted, is usually released as

radiation. The rate of this energy release is simply related to the mass accreted per
unit time, i.e., accretion rate Ṁ = ∆M/∆t,

Lacc = Ṁ
GM

R
≈ 1.3 × 1036

(
Ṁ

1016 g s−1

) (
10 km

R

) (
M
M�

)
erg s−1, (3.2)
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where a typical value of Ṁ ∼ 1016 g s−1 ≈ 1.5 × 10−10 M� yr−1 is taken for the
accretion rate. For higher accretion rate, Lacc can reach the Eddington luminosity
(Eq. (2.26)) of a neutron star.

3.1.1 Roche lobes and mass transfer in binary systems

In order to use the accretion as an energy source, mass transfer needs to take place
in the system. For the mass transfer to keep on operating, a source of fresh material
is needed. In binary systems with two stars, the companions star is the obvious fuel
resource. Here we will focus on the so-called Low Mass X-ray Binary (LMXB)
systems where the companion, like the name implies, is a relatively low-mass star
with a mass M . 1 M�.[109] Such a setup leads to a mass-transfer quite naturally as
the heavier neutron star will just rip out the outer layers of its poor companion and
starts slowly consuming it. As another option, the system could be a so-called High
Mass X-ray Binary (HMXB) system, where the companion of the neutron star has
M ∼ 10 M�, and the accretion happens, for example, via a neutron star capturing
the strong wind from the companion. Here in this thesis, we will, however, only
focus on the LMXB systems.

How exactly is the material transferred from the companion to the primary
star is an interesting problem. We can begin to understand the physical setup by
considering a general hydrodynamical system of two objects in a rotating frame.
Here we select the frame that co-rotates with the binary system. The subsequent
flow of gas between the two stars can then be described by the Euler equation
with additional Coriolis and centrifugal terms.[110] In practice the Euler equation
describes the time evolution of the velocity u of the gas that has a pressure P
and density ρ. In a reference frame rotating together with the binary system with
angular velocity ω the Euler equation takes the form

∂u

∂t
+ (u · ∇)u = −∇ΦR − 2ω × u −

1
ρ
∇P, (3.3)

where the angular velocity of the binary is

ω =

(GM
a3

)1/2
e, (3.4)

as given with the unit vector e normal to the orbital plane. Here M is the total mass
of the system, i.e., M = M1 + M2, where M1 and M2 are the individual masses of
the two stars in the system, respectively, and a is their orbital separation.

The effects originating from the gravitation and from the centrifugal forces are
encapsulated in the so-called Roche potential, given as a function of radial vector
r as[111,112]

ΦR(r) = −
GM1

|r − r1|
−

GM2

|r − r2|
−

1
2

(ω × r)2, (3.5)

where the locations of the stars are given with r1 and r2. By studying the shape of
the potential, we see that in between the two stars, in the so-called L1 point there
exists a location where the countering gravitational forces from the two stars are
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Figure 3.1: Two-dimensional Roche potential ΦR(x, y) visualized for a binary
system with M1/M2 = 0.25 and a = 1. The nozzle (L1 point) is visible as a valley
(or more specifically, a saddle point) between the gravitational wells of the two
stars.

balanced. This can be thought of as a physical nozzle in the system from which the
less massive star will leak material into the more massive star. Such a mass trans-
fer, also known as a Roche lobe overflow, will then occur if the companion star’s
radius exceeds the size of its own individual Roche lobe visualized in Fig. 3.1.
Typically, such a thing can happen when the star evolves and expands at the end of
its life cycle.

3.1.2 Accretion disks

When the mass transfer has started via the Roche lobe overflow, and we have a
stable source of material that is being transferred from the companion to the more
massive neutron star, we can next focus on the region where gravitational forces
of the neutron star dominate. Originally, we can think of each individual incoming
particle having their own circular orbit around the central object. The mass flow,
i.e., the stream of particles, is confined into the orbital plane of the binary system,
hence, the problem of describing the physics of the flow is one dimensional as a
first approximation because only radial coordinate r is considered. This is known
as the so-called thin-disk approximation. The nested circular orbits of the plasma
can be naturally described in cylindrical coordinates, hence the word “disk”. Sec-
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ondly, the scale height H of the disk is small compared to the radial coordinate
(H � r), so we say that the disk is thin.

Radial structure of the disk can then be obtained from the Keplerian rotation
law as

ΩK(r) =

(GM
r3

)1/2
, (3.6)

describing an angular velocity as a function of radial coordinate from the disk
center. There is an important detail hidden here in the Kepler’s law: Keplerian
angular velocity implies differential rotation, i.e., varying angular velocities as a
function of r. Such a shearing between two adjacent annuli will then lead to vis-
cous stresses.

The disk’s structure can be obtained from the hydrodynamical equations in
cylindrical coordinates. Instead of the density ρ, let us use the surface density
Σ = 2Hρ to describe the mass. Conservation of mass and angular momentum can
then be written as[74,110]

r
∂Σ

∂t
+
∂

∂r
(rΣvr) = 0, (3.7)

and
r
∂

∂t
(Σr2Ω) +

∂

∂r
(rΣvrr2Ω) =

1
2π

∂τ

∂r
, (3.8)

where vr is the velocity in r direction and τ is the viscous torque of the differentially
rotating disk.

Torque, in general, can be understood as an angular momentum flux density
per unit time and is given by

τi = εi jkr j fk, (3.9)

where εi jk is the Levi-Civita symbol, and fk is the force density, i.e., momentum
density flux per unit time, given as

fk = σkhnh. (3.10)

Here σkh is the kh-component of a general stress tensor σi j, and nh is some surface
normal of the area where the shearing takes place. In our case, we can compute the
shear in cylindrical coordinate system focusing on r and φ coordinates only as[110]

σrφ = ρν

(
r
∂

dr

{vφ
r

}
+

1
r

dvr

dφ

)
, (3.11)

which simplifies to

σrφ = ρνr
dΩ

dr
, (3.12)

when we remember that vφ = rΩ and assume the flow to be symmetric in the
azimuthal φ-direction (∂vr/∂φ = 0). The total viscous torque acting at the 2πr(2H)
area corresponding to the disk rim at location r is then

τ(r, t) = 2πrνΣr2 dΩ

dr
. (3.13)
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3.1 Accretion

Combining the latter expressions and assuming Keplerian rotation Ω(r) =

ΩK(r) with a fixed central mass of M (i.e., ∂Ω/∂t = 0), we can then solve the
system of equations and obtain expressions for the surface density and the radial
velocity as

∂Σ

∂t
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(νΣr1/2)

]
, (3.14)

and

vr = −
3

Σr1/2

∂

∂r
(νΣr1/2). (3.15)

In order to continue further, we would need a description for the viscosity ν. It
could have its roots on the normal molecular viscosity[113] or like the current the-
ories imply, be magnetohydrodynamic in nature. The latter is known as the mag-
netorotational instability (MRI) where magnetic stresses of turbulent field lines
cause viscosity for the plasma.[114–116] As another approach, we should also men-
tion the widely successful α parameterization by Shakura & Sunyaev, known as
the “standard disk” or α-disk.[117] This method is mostly mathematical as we just
reparameterize our ignorance of the viscosity into a new parameter called α, that
is taken to be proportional to the local soundspeed cs and height of the disk H, as
ν = αcsH. Even though only mathematical in nature, this formulation has turned
out to be extremely successful in helping to explain the basic functionality of ac-
cretion disks because α can be treated as a small parameter in all the subsequent
formulae. The physical reason for the smallness of α is also intuitive: velocities
can not be larger than the local soundspeed, otherwise supersonic flows would
produce shocks that would dissipate energy until the local velocities are subsonic
again. Similarly, the size of the turbulent eddies must be smaller than the disk scale
height. Together these then imply α . 1.

To get some idea of the disk dynamics, we can, as our zeroth order approxi-
mation assume ν = constant. Then, the time-dependent disk structure (Eqs. (3.7)
and (3.8)) can be solved, for example, by assuming as an initial condition a ring of
mass m at r = r0,

Σ(r, t = 0) =
m

2πr0
δ(r − r0), (3.16)

where δ is the Dirac delta function. As a solution, we then obtain a mass distribu-
tion that slowly diffuses due to viscosity as

Σ(r̃, t̃) =
m
πr2

1
t̃ r̃1/4 exp

[
−

(1 + r̃2)
t̃

]
I1/4

(
2r̃
t̃

)
, (3.17)

where I1/4(x) is the modified Bessel function, r̃ ≡ r/r0 is the dimensionless radial
coordinate, and t̃ ≡ 12νt/r2

0 is the dimensionless time. Inserting (3.17) into (3.15),
we also obtain

vr(r̃, t̃) = −
3ν
r0

∂

∂r̃

[
1
4

ln r̃ −
(1 + r̃2)

t̃
+ ln I1/4

(
2r̃
t̃

)]
. (3.18)
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Which in the asymptotic limits give

vr ∼


3ν
r0

(
1
4r̃

+
2r̃
t̃
−

2
t̃

)
> 0 for 2r̃ � t̃

−
3ν
r0

(
1
2r̃
−

2r̃
t̃

)
< 0 for 2r̃ � t̃.

(3.19)

Even from this simplified treatment we can understand the basic physics of how
the accretion disks operate: The viscous shear stresses help the rotating plasma
redistribute its angular momentum outwards while at the same time most of the
mass is accreted inwards.

Let us next study a steady-state disk solution by setting ∂/∂t → 0. From the
angular momentum conservation (3.8), we obtain

rΣvrr2Ω =
τ

2π
+

C
2π
, (3.20)

with a constant C that physically represent a torque term from the coupling of the
inner disk and the star at r ≈ R. In short,∗ it is given by

C ≈ −Ṁ(R)R2Ω(R) ≈ −ṀR2ΩK(R) = −Ṁ(GMR)1/2, (3.21)

with the expression for the mass accretion rate given in terms of the radial velocity
vr as

Ṁ(r) = −
2πrΣdr

dt
= −2πrΣvr, (3.22)

and assuming a thin layer for the zone where the inner disk angular velocity is
slowed down to the angular velocity of the star (otherwise, we could not set r →
R). Substituting this into (3.20), and assuming Keplerian angular velocity profile,
we obtain

νΣ =
Ṁ
3π

[
1 −

(R
r

)1/2]
. (3.23)

Physically this represents a steady-state solution of a disk with central torque ap-
plied to it. Viscous dissipation rate per unit disk face area is then†

D(r) =
τΩ′

4πr
=

1
2
νΣ(rΩ′)2 =

3GMṀ
8πr3

[
1 −

(R
r

)1/2]
. (3.24)

Finally, from here we can compute the luminosity of the disk faces due to energy
lost by viscous dissipation

L(r1, r2) = 2
∫ r2

r1

D(r)2πrdr =
3GMṀ

2

∫ r2

r1

[
1 −

(R
r

)1/2] dr
r2

=
3GMṀ

2

 1
r1

1 − 2
3

(
R
r1

)1/2 − 1
r2

1 − 2
3

(
R
r2

)1/2
 ,

(3.25)

∗Torque is alternatively defined via the linear momentum p = mvφêφ, as τ = d(r × p)/dt =

rvφdm/dt = r2ΩṀ. This again represents the flow of angular momentum in the system.
†Viscous dissipation rate in ring of width dr is τΩ′dr, i.e., the rate of work done by the torque,

and the total area of the ring, taking into account both the lower and upper faces, is 4πrdr. Hence,
we obtain Eq. (3.24) as the ratio of these.
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3.1 Accretion

and by then setting r1 → R and r2 → ∞, we get

Ldisk =
GMṀ

2R
=

1
2

Lacc. (3.26)

Hence, half of the potential energy will be lost by the viscous shearing and is
radiated away by the upper and lower faces of the accretion disk. Importantly, the
other remaining half will be transferred all the way to the star.

Temperature of the hottest inner disk can be estimated by assuming an optically
thick media and using the dissipation rate D as the surface flux. This innermost
region of the disk is the brightest because here the gravity is the strongest and the
dissipation area the smallest. An estimate for the disk surface temperature can then
be obtained from

σSBT 4
disk(r) ∼ D(r). (3.27)

From here we obtain

Tdisk(r) = T∗

[
1 −

(R
r

)1/2]1/4 (R
r

)3/4
, (3.28)

where

T∗ =

(
3GMṀ

8πR3σSB

)1/4

≈ 2.3 × 107
(

Ṁ
1016 g s−1

)1/4 (
M
M�

)1/4 ( R
10 km

)−3/4
K, (3.29)

is a typical temperature in the innermost regions of the disk.
Observationally we see that the disks are, however, not as simple as discussed

here.[118] The standard α-disk model assumes steady-state, whereas in reality the
disk structure evolves in time. Most importantly, the mass accretion rate is seen
to vary over long timescales. From observations, we also know that the disks
alternates between three states called, quiescent, hard and soft state.[118–123]

The soft (also known as “high” or “thermal-dominant”) state is characterized
by a strong soft component in the observed spectra.[124] There is, however, also a
complex non-thermal tail usually present.[125] Here the soft component could be
interpreted as a thermal radiation from an optically thick disk but the non-thermal
tail implies that this picture is not complete. The hard (also known as “low”) state
is even more complicated as the observational spectra is dominated by a strong
hard X-ray component but some signs of a low-temperature thermal disk is also
sometimes visible.[126] In the final quiescent, or “off” state, the observed flux typ-
ically drops below the detection limit and we do not see anything.

The current physical interpretation of these two states can be satisfactorily ex-
plained by a truncated disk model with a hot inner flow. Here the disk, well-
described by the Shakura & Sunyaev α-disk is truncated, i.e., does not always
reach the central object. The cool and optically thick, geometrically thin, disk is
then responsible of the low-energy thermal radiation. In the innermost parts, the
disk turns into hot, optically thin flow, that is also responsible for the non-thermal
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Chapter 3: Astrophysics around neutron stars

Figure 3.2: Schematic view of the two different accretion states. Top: Soft state
with inner disk extending all the way down to the neutron star surface. Bottom:
Hard state with truncated disk and hot inner flow (red).

radiation component. Depending on the mass accretion rate, the disk truncation ra-
dius varies and so the strength of the thermal disk and hot inner flow components
can vary. To simplify, this means that hard state typically corresponds to a low
accretion rate and soft state to a high mass accretion rate. In the quiescent state,
the flow of matter might then come to a halt completely.
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3.1 Accretion

3.1.3 Boundary layers

Our simple analysis of accretion disk physics has shown that viscous dissipation
can get rid of up to half of the potential energy of the incoming matter. Where the
other half goes, we shall look next.

Imagine the accretion disk extending all the way down to the central star.
The spin frequency of this disk edge can be taken to be Keplerian, ΩK(R)/2π ∼
1500 Hz. The star, on the other hand, usually rotates anywhere from 100 to 600
revolutions per second.[127,128] Hence, we expect a thin interface between the star
and the disk where angular velocity changes by a factor of ∼ 3 to 15. This region
we call the boundary layer.

Let us assume a thin layer of width b so that Ω(R + b) ≈ ΩK(R + b). Within this
layer, the angular velocity should decrease to Ω∗ as we move from radial location
R + b to R towards the star’s surface. The viscous torque to spin up the star is then,
similar to (3.21), written as

τ∗ = ṀR2(ΩK −Ω∗). (3.30)

Rate of the kinetic energy change, on the other hand, is simply obtained by con-
sidering the difference of the kinetic energies per time as

Ė =
1
2

ṀR2(Ω2
K −Ω2

∗) =
1
2

Ṁ
GM

R

1 − (
Ω∗

ΩK

)2 (3.31)

For the expression of the total rate of energy change we need to subtract the work
done by the viscous torque per unit time, τΩ∗, to get

LBL =
1
2

ṀR2(Ω2
K −Ω2

∗) − ṀR2Ω∗(ΩK −Ω∗) =
1
2

GMṀ
R

(
1 −

Ω∗

ΩK

)2

(3.32)

In the limit Ω∗ � ΩK we obtain

LBL =
1
2

GMṀ
R

=
1
2

Lacc. (3.33)

Let us finally estimate the temperature of this layer. By assuming an optically
thick emitting region, we get a characteristic blackbody temperature again from

ABLσSBT 4
BL ∼ LBL, (3.34)

where ABL is the area of the emitting region. As a reasonable first guess we can
use b ∼ H so an annulus around the star has an area of ABL = 2 × 2πRH taking
into account both top and bottom face. This corresponds to a temperature of

TBL ∼

(
GMṀ

8πσSBR2H

)1/4

∼ T∗
( R

H

)1/4
(3.35)

As another option we can consider a so-called spreading layer.[129,130] Instead
of assuming that the energy is dissipated in a thin equatorial ring, we can assume
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Chapter 3: Astrophysics around neutron stars

that it will spread to cover the whole star. In this case, ASL ∼ 4πR2, and using Eq.
(3.34), we get

TSL ∼ T∗, (3.36)

i.e., a smaller temperature (TSL < TBL) that is comparable to the temperature of
the disk.

Finally, one should note that the physical processes discussed here assume
Newtonian gravity. In a general relativistic treatment the energy release in the
boundary layer can be almost two times that of the energy released in the disk.[131,132]
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4 Probing the ultra-dense matter

The main motivation for this thesis was to set constraints for equation of state of
the ultra-dense matter inside neutron stars. Instead of starting from the nuclear
physics that works on the smallest scales, we use astrophysical observations to
study large-scale “global” aspects of neutron stars. It is then possible to make
a step back to the nuclear physics because the size of a compact star is strongly
coupled to the composition of its core.

Looking from the astrophysical point of view, it is the size of the neutron star
that will define many of its observable features. One of the most important charac-
teristics is the compactness of the object that will then define the exact shape of the
spacetime surrounding it. The strongly curved spacetime, in turn, influences many
of the phenomena occurring in the close vicinity of the star and will also leave its
distinct imprints on the observations.

The physical phenomena behind the observable features, on the other hand,
are often highly energetic, otherwise they would not be seen by distant observers,
such as us. It is these highly energetic physical processes that will then render
the neutron stars visible to us, and that at the same time carry a plethora of in-
formation from the surroundings of where they originated from. This gives birth
to a beautiful connection where the delicate and unattainable nuclear physics of
the ultra-dense matter is coupled to vigorous astrophysical phenomena that we can
observe. The caveat here is that the astrophysical processes are often messy and
poorly understood. Hence, a thorough understanding of both, the nature of the
observed phenomena and how it exactly couples to the nuclear physics, is needed.

In this thesis, we will focus on extracting information from neutron stars using
astrophysical phenomena called X-ray bursts. They are produced by an unstable
thermonuclear runaways in the surface layers of the star and can be seen as end-
results of accretion. In theory, using the X-ray bursts to probe the neutron star
interiors is a robust way to study the matter inside the star as we can theoretically
model the characteristics of the emerging radiation and these models can be ap-
plied to describe the data that we see. In practice, however, caution is needed when
applying the models as the environment and the astrophysics near the neutron star
play a huge role.

In this final chapter, we will lay out the basics of how observing the burst
cooling it is possible to set constraints on the size of the emitting area, and in the
end, on the radius of the neutron star. We will also summarize the content of the
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Chapter 4: Probing the ultra-dense matter

articles in this thesis and discuss our work where we try to understand not only the
complex role of the astrophysical surroundings but in the end, the composition of
the core.

4.1 X-ray bursts and unstable thermonuclear burning

Accretion can be a powerful energy source but this is not the end of the material
that slowly spirals down into the star. After it has traveled all the way to the
surface of the neutron star, it will slowly sink and mix with the material in the
star’s upper layers. Here this new material compresses and heats up, acting as fresh
fuel. Eventually the kinetic energy of the nuclei is large enough so that the protons
will collide, fuse together, and release a fraction of their rest-mass energy. This
heat injection will then start an unstoppable chain reaction that creates a burning
front that eventually covers the whole star. Thermonuclear fusion reaction will
then last until all the available fuel on the star’s upper layers is exhausted and
consumed. This is the basic picture of an unstable nuclear burning taking place
in the neutron star’s upper layers. One should also note that a stable, continuous
burning is also possible via a similar mechanism. Generally, however, the nuclear
burning reaction rates have a very strong temperature dependency, and hence, the
plasma is very unstable for local perturbations that might then start the explosive
burning.

The explosive burning front rapidly expands and momentarily engulfs the whole
star. This hot shell will then cool down and shine X-rays to us. Observation-
ally these bursts are classified as type-I X-ray bursts.[54,133] As another option, we
might see flaring also from instabilities in the incoming mass flow. These events
are classified as type-II bursts, and we do not focus on them, as here we are inter-
ested in probing the neutron star itself. A typical X-ray burst has a rise time of 0.1
to 10 seconds and a duration from 10 to 100 seconds. During this time, it releases
1039 − 1040 erg of energy. Temperature in the upper layers is of around T ∼ 107 K
and the main ingredient for the fusion process is either hydrogen, helium, or both.

The driving engine for an X-ray burst is the unstable thermonuclear fusion
process.[134–136] The burning of hydrogen plasma is dominated by the CNO-cycle
if temperature is around 107 K. For a slightly hotter plasma, T & 8×107 K, we have
to modify the reaction a bit into a so-called hot CNO-cycle.[137] Helium plasma,
on the other hand, burns via the triple-α process (active when T & 2 × 108 K). In
addition to these two main reactions, the αp-process can operate when T & 5 ×
108 K, creating heavier elements like Ne, Na, and Mg. The rp-process to synthesize
even heavier elements can take place if T ∼ 109 K. In the end, the accreted matter
is fused together into heavier elements, and at the same time, energy is released
into the neutron star envelope.

If the accreted material does not have any hydrogen, or if the hot CNO-cycle
has enough time to burn all the available hydrogen into helium, the ignition starts
in the helium shell. On the other hand, if the hot CNO burning of hydrogen is
not continuous, it can trigger the runaway in the hydrogen shell, after which the
helium shell will also ignite. These minor details have observational importance,
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4.2 Measuring the sizes of the bursting sources

as we sometimes see bursts with very short rise times, and other times it might take
seconds for the burst to really get going.

This discrepancy is believed to originate from this changing ignition mech-
anism. In addition to the normal type-I bursts, we have also recently detected
more rare long-duration bursts, now commonly dubbed as “superbursts”.[61,138,139]

These are thought to be powered by carbon burning.[140] When looking at the du-
ration, there are also a third class of bursts in between the superbursts and normal
bursts, named “intermediate bursts”.[141]

All in all, the energy production of bursts appears to be a complex mechanism
that we do not fully understand yet.[142,143] This is also reflected in the large va-
riety of burst durations, energetics, and rise times that we have observationally
detected.[144]

4.2 Measuring the sizes of the bursting sources

Even though the bursts characteristics change from one burst to another as we saw
in Sect. 4.1, the cooling appears to obey some common trends. This means that
as long as we have some kind of energy injection deep below the neutron star’s
atmosphere, the energy will radiate out and the uppermost layers of the star will
then shape it into a similar cooling curve, independent of the actual details of the
injection. If we are then able to model the atmosphere and the processes therein,
we can use the bursts as probes for the neutron star interiors. Note, however, that
not every burst is powerful enough to be of practical use. As we shall see, we
additionally require that the bursts reach the Eddington limit, which in practice
means using the PRE-bursts only.

To begin, let us define three different families of quantities: observed quantities
(obs), theoretical quantities predicted by our model at infinity (∞), and the same
theoretical model quantities in the local frame of the star (∗). This is done, because
general relativistic effects change the local physical quantities as they travel from
the star to a distant observer.[54] More specifically, we can connect the temperatures
T , radii R, and luminosities L as

R∞ = R∗(1 + z), (4.1)

T∞ =
T∗

1 + z
, (4.2)

L∞ =
L∗

(1 + z)2 , (4.3)

where (1+z) is the redshift factor that is related to the previously defined compact-
ness u = 2GM/Rc2 as

1 + z = (1 − u)−1/2. (4.4)

From the observations, we see that the detected burst spectra are reasonably well
described by the Planck function (blackbody) as

FE,obs ≈ πBE(Tobs)Kobs, (4.5)
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Figure 4.1: Examples of bolometric flux, temperature and blackbody normaliza-
tion evolution during the hard-state PRE bursts. The black line shows the esti-
mated bolometric flux (left-hand vertical axis) in units of 10−7 erg cm−2 s−1. The
blue ribbon shows the blackbody normalization (outer right-hand vertical axis) in
( km/10 kpc)2. The red ribbon shows the blackbody temperature (inner right-hand
vertical axis) in keV. Highlighted gray area marks a typical region of the cooling
tail used in the fitting procedures.

where BE(Tobs) is a blackbody function with a measured temperature Tobs and
normalization Kobs, together with E which is the photon energy that we observe at.
The normalization for an object at a distance D in the sky is

Kobs =
R2

obs

D2 . (4.6)

Observed bolometric flux is then

Fobs =

∫ ∞

0
FE,obsdE = σSBT 4

obs

R2
obs

D2 . (4.7)

Some examples of Planck function fit results for X-ray bursts are shown in
Fig. 4.1. Here the time-dependent spectral fits are shown for one particular source,
4U 1702−429.[145,146] All of the bursts shown here are exhibiting the photospheric
radius expansion, that can be seen from the characteristic dip in the normalization
and of the simultaneous maximum in the temperature.[144] The flux corresponding
to the exact moment when the photosphere collapses back to the neutron star’s
surface is dubbed the touchdown flux, and it is visualized by the first vertical dotted
line in the figures.
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4.2 Measuring the sizes of the bursting sources

From the atmosphere models of neutron stars, we obtain a similar result. The
local detailed model spectra are well approximated by a so-called diluted black-
body model given as

FE,∗ ≈ πwBE( fcTeff,∗), (4.8)

where w is the dilution factor, fc is the color-correction factor, and Teff,∗ is the
effective temperature of the atmosphere. This allows us to connect the observed
values to the theoretical model values by first redshifting these quantities to infin-
ity. From (4.2) we simply obtain that the temperature of the model as seen by a
distant observer must be

fcTeff,∞ = fc
Teff,∗

1 + z
. (4.9)

Similarly, the area of the star on the sky must be related not to R∗ but to R∞ as
given by (4.1)

w
R2
∞

D2 = w
R2
∗(1 + z)2

D2 . (4.10)

The latter (4.10) gives immediate constraints for the radius as it can be equated
with the observed size (4.6) as[147,148]

R2
obs = wR2

∞ = wR2
∗(1 + z)2. (4.11)

Additional constraints can be obtained by measuring the Eddington limit of the
source. As we have seen, there exists a flux for which the radiation forces equal to
the gravitational forces (see Sect. 2.2.3), given as

FEdd,∗ =
GMc
κTR2

∗

(1 + z), (4.12)

where κT = 0.2(1 + X) cm2 g−1 is the Thomson electron scattering opacity and
X is the hydrogen mass fraction. One should note here that even though we use
the Thomson electron scattering opacity in the notation, one is not restricted to as-
suming this. It is, for example, possible to take the Klein-Nishina reduction in the
cross-section into account which formally allows for super-Eddington fluxes.[71]

In reality the Eddington limit is, of course, still respected. Using this characteris-
tic flux we can also define the Eddington luminosity LEdd,∗ and the corresponding
Eddington temperature TEdd,∗ as

LEdd,∗ = 4πR2
∗FEdd,∗ = 4πR2

∗σSBT 4
Edd,∗. (4.13)

These are again quantities defined near the star whereas what one observes at in-
finity are given by

LEdd,∞ =
LEdd,∗

(1 + z)2 , (4.14)

FEdd,∞ =
LEdd,∞

4πD2 =
GMc
κTD2

1
1 + z

, (4.15)
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and
TEdd,∞ =

TEdd,∗

1 + z
. (4.16)

As the simplest case, we can obtain additional constraints for the radius and
mass by just measuring the FEdd,∞ somehow. This can be done, for example,
by equating it with the touchdown flux obtained from the time-dependent burst
spectra. This is the basis of the so-called “touchdown method”.[148–151]

A more sophisticated version of this is the so-called “cooling tail method”.[152,153]

Here we can compute the varying color-correction factor fc from the atmosphere
models as a function of ` ≡ L∗/LEdd,∗. In this case, the dilution factor was obtained
from the approximative relation fc ≈ w−4. The color-correction factor can then be
related to multiple Kobs measurements, each representing one time snapshot from
the cooling tail. As the time passes and the surface cools down, the flux decreases.
This allows us to compare the model dependency of ` vs. fc to the observations of
Fobs/FEdd,∞ vs. K−1/4

obs . Hence, extra information from the observations is used be-
cause not only are the individual color-correction factor values compared against
the model but also their full dynamic evolution as a function of flux is taken into
account. The fitting procedure is two dimensional in this case as we fit FEdd,∞
and R2

∞/D
2 as free parameters simultaneously. Interestingly, the combination of

these two fit parameters then yield a distance-independent quantity, physically cor-
responding to the Eddington temperature of the source at infinity, given as

TEdd,∞ = 1.14 × 108
(

FEdd,∞

10−7 erg cm−2 s−1

)1/4 (
( km/10 kpc)2

R2
∞/D2

)1/4

K. (4.17)

This corresponds to a parametric relation for the M and R via the compactness u,
given as

R =
c3u(1 − u)3/2

2κTσSBT 4
Edd,∞

≈ 1188
u(1 − u)3/2

(1 + X)T 4
Edd,∞,7

km,

M ≈ u
R

2.95 km
M�,

(4.18)

where TEdd,∞,7 = TEdd,∞/107 K. Later on, another variant of this method was
introduced, called “direct cooling tail method” where the assumption of f ≈ w−4

was relaxed, i.e., both fc and w are considered, and the fitting is done directly via
the M, R and D parameters.[145,154]

The usage of these methods on X-ray burst data span almost three decades of
scientific work as of now. Starting from the early work in the late 80s they have
since improved and been applied to various sources to estimate the radius and
mass. Latest in the family is the method of fitting the observed data directly with
the atmosphere models.[146] Although computationally more demanding exercise,
it allows us to finally extract every piece of information possible from the data.
This is based on the additional model dependency on the surface gravity, compo-
sition, and detailed spectral shape that slightly deviates from the Planck function.
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The big caveat here for any of the aforementioned methods is the surroundings.
We have seen that the astrophysical environment of neutron stars can be very active
and lively. In the general picture, we have the accretion as an energy source and the
disk to dissipate this energy. The disk is, however, not a simple geometrically thin
steady layer but can have complex inner flow. On the other hand, if the disk does
extend all the way down to the star, an additional complication originates from the
boundary or spreading layer that not only can cover the star but also radiate on its
own. These are some of the complications that we face when trying to analyze our
neutron star observations, as after all when trying to constrain the mass and radius
of the star we must make sure that it is actually the star that we are looking at.

4.3 Scientific summary of the results

In this thesis, we have focused on constraining the equation of state of the cool
ultra-dense matter inside neutron stars with astrophysical measurements. The main
results are two-folded as we have both

• improved our understanding of ultra-dense matter and have been able to put
stringent constraints on the equation of state of the neutron star interiors, and

• progressed our understanding of neutron star environments and astrophysics
of X-ray burst.

To be able to do this, we had to develop our observational and statistical methods,
do theoretical research in order to understand the astrophysical scenarios better,
develop and improve our physical models, and finally apply these new methods
and information to real-world observations. Because of this, the results and work in
this thesis can be divided into three categories that we now discuss in more detail.
In short, these include 1) theoretical work on the models, 2) understanding the
astrophysical environment better, and 3) applying the models and the new insights
to astronomical observations.

4.3.1 Modeling of neutron star atmospheres and emergent radiation

Computing hot neutron star atmosphere models for the bursters is of paramount
importance for obtaining the mass and radius measurements from the burst obser-
vations. More specifically, we are interested in the color correction factor fc and
the dilution factor w, in order to compare our knowledge to observations. Previous
models for hot atmospheres have all assumed simple hydrogen, helium, or solar
composition for the plasma. In some cases, however, the burning ashes may rise
from the burning depths up to the photosphere, leading to the appearance of the
metal absorption edges in the spectra. These effects may have a substantial impact
on the color correction factor and the dilution factor w. In paper I, we have de-
veloped a new atmosphere modeling code to compute the emergent spectra for a
composition consisting of any atomic species. We find that the metals may change
fc by up to about 40%. The presented models also made possible to determine
the NS mass and radii more accurately for cases when we do see signs of burning

53



Chapter 4: Probing the ultra-dense matter

ashes, and provided a new tool to probe the nuclear burning mechanisms in X-ray
bursts.

The radiative process that we consider all occur at or near the neutron star. Be-
cause of this, many general relativistic effects play an important role in shaping the
observations. In paper II, a theoretical framework for emission originating from
rapidly rotating oblate compact objects was described in detail. In order to solve
the geodesic equation, a new split Hamilton-Jacobi formalism was constructed for
a metric that is expanded up to second order in rotation and hence includes effects
of light bending, frame-dragging, and quadrupole corrections for the photon tra-
jectories. We also gave detailed descriptions of the numerical algorithms used and
provide an open-source implementation of the numerical framework called ben-
der. As an application, we study spectral line profiles from rapidly rotating oblate
neutron stars. The Full Width at Tenth Maximum and Full Width at Half Max-
imum for the so-called smearing kernels are also reported for all of the possible
viewing angles. These can be then used to quantitatively estimate the effects of
rotational smearing on the observed spectra.

4.3.2 Understanding the astrophysical environments of X-ray bursts

As we have seen, the neutron star environment is an important factor that needs
to be understood before reliable mass and radius estimates can be obtained from
X-ray burst observations. In paper III, we study the effects of accretion for one par-
ticular source, LMXB system 4U 1608−52. We found a strong dependence of the
burst properties on the flux and spectral hardness of the persistent emission before
burst. Bursts occurring during the low accretion rate (hard) state exhibit evolution
of the blackbody normalization consistent with the theoretical predictions of neu-
tron star atmosphere models. However, bursts occurring during the high accretion
rate (soft) state show roughly constant normalization, which is inconsistent with
models and therefore these bursts cannot be easily used to determine neutron star
parameters.

In the next paper IV, we continue our analysis further by studying 246 X-ray
bursts in total, from 11 different LMXB systems. Again, we found a dependence
between the persistent spectral properties and the time evolution of the blackbody
normalization during the bursts. The neutron star atmosphere model predictions
agree with the observations for most bursts occurring in hard, low-luminosity,
spectral states, but rarely during soft, high-luminosity, states. We attributed the
observed phenomena to the accretion flow, which can influence the cooling of the
neutron star especially during the soft state when the accretion rate is high. The
results had the important implication that only the bursts occurring in the hard,
low-luminosity spectral states could be reliably used for mass and radius determi-
nation.

4.3.3 Constraining the mass and radius of neutron stars

By now applying the atmosphere model results to the X-ray burst data, we can try
to set constraints for the size of the emitting source. However, here it is crucial
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to take into account also the accretion rate, i.e., consider bursts that occur during
the hard-state only. In paper V we did this analysis for three different LMXB sys-
tems: 4U 1702−429, 4U 1724−307, and SAX J1810.8−260. This allows us to set
constraints for the masses, radii, compositions, and distances of the neutron stars
in those systems. We then obtained a parameterized equation of state by compar-
ing the resulting neutron star structures to the radius and mass measurements we
had. This was done by solving the TOV-equations and then using Monte Carlo
algorithm within a Bayesian framework to obtain constraints for the underlying
equation of state parameters. This allows us to set limits on various nuclear pa-
rameters and to constrain an empirical pressure-density relationship for the dense
matter. Our predicted equation of state leads to a neutron star radius between 10.5
to 12.8 km for a mass of 1.4 M�.

The bursts that we considered in the aforementioned publication, were con-
strained to have an atmosphere consisting of almost fully of hydrogen and he-
lium. This is always not the case as explosive nuclear burning can fuse H and He
into heavier elements too. In paper VI, we presented our analysis of one particu-
larly interesting long burst observed from the neutron star in LMXB system HETE
J1900.1−2455. New atmosphere model fits to these bursts indicated that some-
times the photosphere can consist entirely of metals, i.e., nuclear burning ashes.
These heavy metals like iron and nickel were detected already early on during the
burst, which makes it possible that a radiatively driven wind might eject some of
these ashes also into the interstellar space. Hence, neutron star X-ray bursts might
be one possible source of interstellar pollution.

Most previous works on X-ray bursts have used the Planck functions as a proxy
to simplify the model vs. data comparison. In paper VII, we, for the first time, fit-
ted neutron star atmosphere models directly to the observed spectra. This was done
using a new nested hierarchical Bayesian model that allowed us to set new limits
on mass, radius, composition, and distance of the neutron star in 4U 1702−429.
We then find a radius of R = 12.4 ± 0.4 km, gravitational mass M = 1.9 ± 0.3 M�,
distance 5.1 < D/kpc < 6.2, and hydrogen mass fraction X < 0.09 with a 68%
confidence for this source.

4.4 The author’s contribution to the publications

Paper I.: Models of neutron star atmospheres enriched with nuclear burning ashes

The author contributed to the main idea of the paper, independently redesigned
the neutron star atmosphere code used for the calculations, and implemented new
physical processes to this numerical framework. The author also prepared most of
the manuscript together with J. Kajava.

Paper II.: Radiation from rapidly rotating oblate neutron stars

The author proposed the idea of applying the split-Hamilton method to the ray
tracing problem and designed the numerical code for the calculations. The theo-
retical framework and the related formulae were derived together with P. Pihajoki.
The manuscript was also prepared together with P. Pihajoki.
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Paper III.: The effect of accretion on the measurement of neutron star mass and
radius in the low-mass X-ray binary 4U 1608−52

The author of the thesis made contributions to the manuscript, reduced and an-
alyzed the observational X-ray data, and contributed to the scientific discussions
related to the manuscript.

Paper IV.: The influence of accretion geometry on the spectral evolution during
thermonuclear (type I) X-ray bursts

The author participated in the reduction and analysis of the observational data,
made significant contributions to the development of the data reduction software,
and helped in the preparation of the manuscript.

Paper V.: Equation of state constraints for the cold dense matter inside neutron
stars using the cooling tail method

The author independently designed the Bayesian fitting framework for the cool-
ing tail method, reduced and analyzed the X-ray observations, and finally led the
equation of state modeling from the observations. The author also prepared the
manuscript.

Paper VI.: Detection of burning ashes from thermonuclear X-ray bursts

The author contributed to the main idea of this research and was responsible of
the atmosphere modeling of the observations. The Bayesian atmosphere spectral
model fitting framework was also independently designed by the author. Author
also contributed to the manuscript.

Paper VII.: Neutron star mass and radius measurements from atmospheric model
fits to X-ray burst cooling tail spectra

The author independently designed the hierarchical Bayesian fitting framework,
implemented it into a code together with M.C. Miller and A.W. Steiner, analyzed
the data, and, finally, prepared most of the manuscript together with M.C. Miller.
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