ULTRASENSITIVE LATERAL FLOW ASSAYS FOR QUANTITATIVE ANALYSIS

Sonja Koskela and Ph.D. Vida Martiskainen
Department of Life Technologies, University of Turku MOLECULAR BIOTECHNOLOGY AND DIAGNOSTICS

UNIVERSITY OF TURKU

INTRODUCTION

Troponin is a protein complex that regulates the contractile cycles of striated muscles (cardiac and skeletal muscles). The cardiac protein complex consists of three subunits: cardiac troponin I, cardiac troponin T and cardiac troponin C. Cardiac troponin I (cTn) is a highly specific biomarker for cardiac

Acute myocardial infarction
The increase of cTn in the bloodstream

Lateral flow (LF) test for the detection of cTn in the bloodstream

MATERIALS AND METHODS

AIMS

- To develop a highly sensitive and quantitative lateral flow test with the sensitivity of < $10 \mathrm{ng} / \mathrm{L}$ by using up-converting nanoparticle (UCNP) labels.
- To investigate the cause of the matrix effect and to reduce the interference

Hypothesis: lg and a complement protein C1q could cause interference in the cTnl lateral flow assay by binding to the assay antibodies

RESULTS AND CONCLUSIONS

cTnl sensitivity in three different sample matrixes
The specific signals of LiHep plasma samples are lower than the signals of the other two sample matrixes which indicates the matrix effect.

The limit of detection values of $\mathbf{c T n l}$ in three different sample matrixes:
6.11 ng/L (7.5 \% TSA-BSA)
12.36 ng/L (LiHep plasma)
3.79 ng/L (LiHep plasma treated with the Clean-Up kit)

The effect of C1q

Dilution series of LiHep plasma was tested with Anti-C1q label. A) The signals of Anti-C1q scrub line B) The signals of Anti-cTnl test line

Conclusion:
lg and C1q do not cause interference in the cTn LFA.

