Lipid classes and fatty acids in selected Finnish lake microalgae

<u>Elsa Haloila</u>

Supervisors: PhD Gabriele Beltrame, Doc. Annelie Damerau, Prof. Kaisa Linderborg

Department of Life Technologies, University of Turku FOOD DEVELOPMENT

Introduction and aim

Microalgae are rich source of healthy long-chain omega-3 fatty acids, such as eicosapentaenoic acid (EPA, 20:5 (n-3)) and docosahexaenoic acid (DHA, (22:6 (n-3)). Main source for EPA and DHA in regular diet are fish and fish oil products. Fishing

alone is not a sufficient way to produce enough omega-3 fatty acids for all people, and that's why new sources for omega-3 fatty acids should be examined. Aim of this study is to analyse lipid classes and fatty acids from three different microalgae species, *Gymnodinium impatiens*, *Cryptomonas sp.* and *Euglena velata*, from Finnish lakes and to assess if these microalgae could be used as raw material for omega-3 dietary supplements. The algae were selected based on the previous research of the collaborator Associate Professor Sami Taipale (University of Jyväskylä).

Fatty acid methylation and fatty acid analysis with GC-FID

UNIVERSITY OF TURKU

> Lipid class analysis with LC-MS/MS

analysed with gas chromatography to analyse fatty acid compositions.

Results

Table 1. PL = polar lipids, NL = neutral lipids. In total 31 different fatty acids were identified, in which five most abundant fatty acids of each sample are presented in the table. *G. impatiens* had most DHA (18.6%) and *C. sp.* had least DHA (2.2%). *C. sp.* had most EPA (21.7%) and *E. velata* had least EPA (4.8%). Polar lipids had more EPA and DHA than neutral lipids.

Fatty acids					
G. <i>impatiens</i> total	18:4 (n-3)	20:5 (n-3)	22:6 (n-3)	16:0	18:2 (n-6)
G. impatiens PL	18:4 (n-3)	20:5 (n-3)	22:6 (n-3)	16:0	18:2 (n-6)
G. impatiens NL	16:0	14:0	18:4 (n-3)	18:0	18:2 (n-6)
C. sp. total	18:4 (n-3)	20:5 (n-3)	16:0	18:3 (n-3)	18:1 (n-7)
C. sp. PL	16:0	18:4 (n-3)	20:5 (n-3)	18:3 (n-3)	18:1 (n-7)
C. sp. NL	16:0	18:0	14:0	18:2 (n-6)	12:0
E. velata total	16:4	18:3 (n-3)	16:0	18:2 (n-6)	22:6 (n-3)
E. velata PL	16:0	18:3 (n-3)	16:4	18:2 (n-6)	14:0
E. velata NL	16:0	14:0	18:0	18:2 (n-6)	20:1 (n-9)

- Neutral lipid amounts varied from 41% (*C. sp.*) to 59% (*E. velata*)
- Identified neutral lipids: triacylglycerols (TAGs) and diacylglycerols (DAGs)
- Identified polar lipids: monogalactosyl diacylglycerols (MGDGs),
 digalactosyl diacylglycerols (DGDGs) and phosphatidylcholines
 (PCs)
- Most important lipid classes were MGDGs (52.6 56.2% of identified lipid classes) in polar lipids and TAGs (10.4 – 25.9% of identified lipid classes) in neutral lipids

- *G. impatiens* would be the best option for further research and a source for omega-3 dietary supplements because its EPA + DHA amount and total lipid content were the highest
- Further research should be done with a higher sample amount, which would enable repetition of the analysis