The reproducibility of silica-based controlled release therapeutics manufacturing

<u>Teemu Lintunen¹, Doc. Mika Jokinen², B.Sc. Tatu Assmuth² and Prof. Mikko Metsä-Ketelä¹</u>

¹Department of Biotechnology, University of Turku, ²DelSiTech Ltd, Turku

BIOTECHNOLOGY (tech.)

Introduction	Results	
	Source	Logworth
DelSiTech is a pharmaceutical company specializing in formulation	X1	12,486
	XA	8 208

of long-acting injectables. Their manufacturing process is based on sol-gel-technique and the product is a gel-depot with an encapsulated active pharmaceutical ingredient (API). The aim of this study is to study this innovative manufacturing process in terms of its reproducibility.

X8	6,146	0,00000
X9	2,352	0,00445
X3	1,113	0,07712
X6	0,444	0,35945
X7	0,330	0,46778
X2	0,322	0,47632
X5	0,314	0,48476

PValue

0.00000

0,00000

Table 1. Few parameters were found to have a statistically

- \succ The parameters with the biggest effect

oxidability. Guided by results gained, a spray drying step was executed to produce an intermediate product of the manufacturing process, silicamicroparticles. These microparticles were analyzed based on particle size distribution and in vitro dissolution. For the nature of the study, no active pharmaceutical ingredient was used.

A=20 w-%, B=13 w-% and C=9 w-%. The viscosity varied more in the silica sols with most dry content (i.e. silica).

Conclusions

Results this far imply that the manufacturing process is rigid and reproducible. The process will be studied further.

silica sol properties, the microparticle

sizes were similar.

References

• Noppari, P., Jokinen, M., Dargelas, F., Mikkola, J. & Leino, L. (2021) CHAPTER 9. Parenteral Delivery of Therapeutic Proteins, Peptides and Small Molecules Using Biodegradable Silica. In V. Srivastava, Drug Development and Pharmaceutical Science (ss. 188–215). Cambridge: Royal Society of Chemistry

