

Lactic acid fermentation of crowberry juice: Effects on phenolic compounds

Niklas Nurminen

Ph.D. Doc. Oskar Laaksonen, Ph.D. Doc. Ye Tian Department of Life Technologies, University of Turku

FOOD CHEMISTRY

1 Introduction

- Crowberry (Empetrum nigrum L.) underutilized berry crop rich in phenolic compounds
- New ways to process berries → better flavor, more attractive to consumers and industry?
- Lactic acid fermentation to modify physicochemical properties? → studies on crowberry juice lacking
- How does lactic acid fermentation impact various phenolic compounds, like anthocyanins?

2 Materials and methods

3 Results

Fig. 1 Total anthocyanins in crowberry juice samples based on HPLC-DAD. Results normalized for unpasteurized, pH 3.7 juice (100 %). * = p<0.05; ** = p<0.01; *** = p<0.001

Table 1 Results for viable colony counts. Number of viable cells for both strains of *L. plantarum* in non-pH-adjusted and pH-adjusted crowberry juice after inoculation (Day 0) and after fermentation (Day 5). CFU = colony forming unit.

Strain	рН	Day 0 (CFU/ml)	Day 5 (CFU/ml)	Change
DSM 100813	3.7	10 ¹⁵	10 ¹⁴	Decrease
DSM 16365	3.7	10 ¹²	10 ¹¹	Decrease
DSM 100813	5.0	10 ¹⁴	10 ¹⁸	Increase
DSM 16365	5.0	1014	1018	Increase

4 Conclusions

- Anthocyanins decreased in all samples during fermentation, more at pH 5.0
- However, in samples fermented by DSM 100813 anthocyanin content slightly higher than in corresponding controls
 - → Stabilization of anthocyanins?
- pH-adjusted juice more suitable growing medium (increase in number of bacteria)