#### UNIVERSITY OF TURKU

# Transcriptome of the SigB overexpression strain of cyanobacterium *Synechocystis* sp. PCC6803

novo nordisk fonden

<u>Tayyab Saleem</u>, MSc. Otso Turunen, Doc. Taina Tyystjärvi Department of Life Technologies, University of Turku MOLECULAR SYSTEMS BIOLOGY

#### Introduction

For acclimation to abiotic stresses, *Synechocystis* sp. PCC6803 adjusts its gene expression. Depending on the type of stress, different sigma (σ) factors bind to RNA polymerase to modulate gene expression. One of these stress responsive σ factors is SigB, activated under heat, oxidative stress, and osmotic stress. Adding an extra copy of the *sigB* gene, under the strong *psbA2* promoter, to the *Synechocystis* genome (Fig. 2) increases its expression 4-fold in the SigB overexpression (SigB-oe) mutant compared to the control strain (CS) [1]. Under different environmental stresses, SigB-oe performs better and produces more heterologous proteins than CS [1]. I have studied the SigB-oe transcriptome in an optimal growth environment.





Figure 2. Construct of the SigB-oe mutant, containing the nourseothricin resistance cassette (NAT) [1].

### Main Aims

Compare the transcriptomes of the SigB-oe mutant and the control strain (CS) in standard growth conditions.

Studying the content of sigma factors in the RNAP holoenzyme in the SigB-oe strain.

Figure 1. Roles of SigB sigma factor in Synechocystis.

## Transcriptomes of SigB-oe and CS



|       | 0.00 | 2.00<br>Protein Name                                       |
|-------|------|------------------------------------------------------------|
| 1182  |      | isoprenylcysteine carboxylmethyltransferase family protein |
| 1185  |      | cytochrome b6-f complex iron-sulfur subunit                |
| 1181  |      | photosystem II q(b) protein                                |
| 10453 |      | NbIA/ycf18 family protein                                  |
| r1966 |      | DUF2892 domain-containing protein                          |
| 10452 |      | NbIA/ycf18 family protein                                  |
| 0306  |      | RNA polymerase sigma factor SigB                           |
| 1891  |      | DUF928 domain-containing protein                           |
| 1267  |      | hypothetical protein                                       |
| 0319  |      | DUF3747 domain-containing protein                          |
| 1593  |      | cyclic diguanylate phosphodiesterase                       |
| 0470  |      | DUF2808 domain-containing protein                          |
| 1259  |      | MBL fold metallo-hydrolase                                 |
| 1204  |      | HhoA/HhoB/HtrA family serine endopeptidase                 |
| 114 g | ene  | es with -0.09 < Log2FC < 0.1                               |
| 0551  |      | ribonuclease J                                             |
| 0010  |      | alago II fungayata budyataga                               |

## Main Findings

- No substantial differences found between the transcriptomes of SigB-oe and control strains of *Synechocystis*
- RNAP-SigB holoenzyme content was low in both SigB-oe and control strains
- Similar RNAP holoenzyme contents of SigB-oe and control strains explain why the transcriptomes of these strains are similar in standard conditions
- A possible post-transcriptional mechanism limits SigB abundance in the RNAP holoenzyme, in standard conditions

| sll7089 | type III-B CRISPR module-associated protein Cmr3                    |
|---------|---------------------------------------------------------------------|
| slr0083 | DEAD/DEAH box helicase                                              |
| slr6050 | Eco57I restriction-modification methylase domain-containing protein |
| slr0077 | SufS family cysteine desulfurase                                    |
| slr0324 | ABC transporter permease                                            |
| sll1307 | heme-binding protein                                                |
| sll0555 | type I methionyl aminopeptidase                                     |
| sll7064 | CRISPR-associated protein Csx19                                     |
| sll0385 | energy-coupling factor ABC transporter ATP-binding protein          |
| slr0552 | hypothetical protein                                                |
| slr2006 | NADH-quinone oxidoreductase subunit K                               |
| ssr1038 | hypothetical protein                                                |
| sll0182 | ABC transporter ATP-binding protein/permease                        |
| sll7065 | RAMP superfamily CRISPR-associated protein                          |
| slr1859 | anti-sigma factor antagonist                                        |
| slr1434 | Re/Si-specific NAD(P)(+) transhydrogenase subunit beta              |
| sll1515 | DUF4278 domain-containing protein                                   |
| slr1592 | RluA family pseudouridine synthase                                  |
| slr0376 | DUF1257 domain-containing protein                                   |
| sll1306 | polysaccharide deacetylase family protein                           |
|         |                                                                     |

Methodology

#### weinouology





**Figure 4.** A) Total RNA isolated from SigB-oe and CS cells. B) The heat map showing transcripts with statistically significant (p<0.05) differences between the SigB-oe and control strains.

## **RNAP holoenzymes of SigB-oe and CS**



**Figure 5.** Content of sigma factors in the RNAP holoenyzme and the alpha subunit of RNAP.

**Figure 3.** Thesis workflow. A) For comparing transcriptomes of SigB-oe and CS, three biological replicate cultures were grown in standard conditions (photosynthetic photon flux density 40 µmol m<sup>-2</sup>s<sup>-1</sup>, 32 °C, ambient air, shaken at 90 RPM). Total RNA was isolated using the hot phenol method and sent for commercial sequencing. Sequencing reads were mapped to *Synechocystis* genome using Bowtie2 and counted with HTSeq, and differential expression was analyzed with DESeq2. B) For comparing  $\sigma$  factor content in SigB-oe and CS, a histidine tag was added to the  $\gamma$  subunit of RNAP in both strains. Three biological replicate cultures of SigB-oe+RNAP-His and CS+RNAP-His strains were grown in standard conditions. After isolating soluble proteins, RNAP complexes were pulled down using cobalt-coated magnetic beads. The separation of 0.44 mg of pulled-down proteins was performed using SDS-PAGE, and primary antibodies specific to SigA, SigB, SigC, SigD, and alpha subunit were used for protein detection in Western blotting.

#### References

[1] Turunen, Saleem, Kurkela, Kallio, Tyystjärvi (2024). Engineering RNA polymerase to construct biotechnological host strains of cyanobacteria, Physiologia Plantarum 176:e14263.